File size: 9,706 Bytes
f039b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

from torch import randperm, utils
from torch._utils import _accumulate
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from PIL import Image

class Subset(utils.data.Dataset):
    """
    Subset of a dataset at specified indices.

    Arguments:
        dataset (Dataset): The whole Dataset
        indices (sequence): Indices in the whole set selected for subset
    """
    def __init__(self, dataset, indices):
        self.dataset = dataset
        self.indices = indices

    def __getitem__(self, idx):
        return self.dataset[self.indices[idx]]

    def __len__(self):
        return len(self.indices)



def random_split(dataset, lengths):
    """
    Randomly split a dataset into non-overlapping new datasets of given lengths.

    Arguments:
        dataset (Dataset): Dataset to be split
        lengths (sequence): lengths of splits to be produced
    """
    if sum(lengths) != len(dataset):
        raise ValueError("Sum of input lengths does not equal the length of the input dataset!")

    indices = randperm(sum(lengths))
    return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]

# Quizas deberia eliminar 3d o limpiar
def plot_embedding(X, merged, title = None, classes=11., showimage=True, distPl=0.006, onlyRoman=False):
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)
    
    plt.figure()
    ax = plt.subplot(111)
    ax.set_facecolor('xkcd:white')
    """
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(merged.iloc[i][1]),
                 color=plt.cm.Set1(int(merged.iloc[i][1]) / float(classes)),
                 fontdict={'weight': 'bold', 'size': 9})
    """
    """
    for i in range(X.shape[0]):
        if int(merged.iloc[i][1]) == 22:
            plt.plot([X[i, 0]], [X[i, 1]], 'X', c="black", markersize=10)
            plt.plot([X[i, 0]], [X[i, 1]], 'X', c='black', markersize=8)
        else:
            plt.plot([X[i, 0]], [X[i, 1]], 'o', c="black", markersize=6)
            plt.plot([X[i, 0]], [X[i, 1]], 'o',c=plt.cm.Set3(int(merged.iloc[i][1])), markersize=4)
    """
  
    
    if showimage and hasattr(offsetbox, 'AnnotationBbox'):
        shown_images = np.array([[1., 1.]])
        for i in range(merged.shape[0]):           
            dist = np.sum((X[i] - shown_images) ** 2, 1)
            
            
            if np.min(dist) < distPl: #6e-4:
                # don't show points that are too close
                continue

            shown_images = np.r_[shown_images, [X[i]]]
            image =  Image.open(merged.iloc[i][0])
            inverted_image = image #PIL.ImageOps.invert(image)
            inverted_image.thumbnail((40, 40), Image.ANTIALIAS)
            
            props = dict(facecolor=plt.cm.Set3(int(merged.iloc[i][1])), alpha=1, lw=1)
            imagebox = offsetbox.AnnotationBbox(
                offsetbox.OffsetImage(inverted_image, cmap=plt.cm.gray),
                X[i]+0.030, bboxprops=props)
            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    #cbar = plt.colorbar()
    if title is not None:
        plt.title(title)


import numpy as np
import cv2
from skimage import measure
def landmarks(img_grey, N = 50):
    thresh = 200
    ret,img = cv2.threshold(img_grey, thresh, 255, cv2.THRESH_BINARY)
    if img.ndim == 2:
        img_s = np.ones((img.shape[0] + 100, img.shape[0] + 100)) * 255
        img_s[50:-50, 50:-50] = img
        img = img_s
        contours = measure.find_contours(img, 0.5)
        #fig = plt.figure(figsize=(7, 7))
        #ax = fig.add_subplot(111)
        #ax.imshow(img, interpolation='nearest', cmap=plt.cm.gray)

        # for n, contour in enumerate(contours):
        #print(contours[0].shape)
        contour = contours[0]
        #ax.plot(contour[:, 1], contour[:, 0], linewidth=5)
        # resample_contour = contour[np.random.choice(contour.shape[0], 150, replace=False), :]
        resample_contour = interpcurve(N,  contour[:, 0],  contour[:, 1])
        # print(resample_contour[:4, 0], resample_contour[:4, 1], resample_contour[:4].ravel())
        #df_semilandmarks.loc[index] = [id_name, classe_name] + list(resample_contour.ravel())
        #ax.plot(resample_contour[:, 1], resample_contour[:, 0], 'om', linewidth=5)
        #plt.savefig('output/landmarked_'+id_name)
        #plt.show()
        return resample_contour
    
def interpcurve(N, pX, pY):
    #equally spaced in arclength
    N = np.transpose(np.linspace(0, 1, N))
    #how many points will be uniformly interpolated?
    nt = N.size

    #number of points on the curve
    n = pX.size
    pxy = np.array((pX, pY)).T
    p1 = pxy[0,:]
    pend = pxy[-1,:]
    last_segment = np.linalg.norm(np.subtract(p1, pend))
    epsilon= 10 * np.finfo(float).eps

    #IF the two end points are not close enough lets close the curve
    if last_segment > epsilon * np.linalg.norm(np.amax(abs(pxy), axis=0)):
        pxy = np.vstack((pxy, p1))
        nt = nt + 1

    pt = np.zeros((nt, 2))

    #Compute the chordal arclength of each segment.
    chordlen = (np.sum(np.diff(pxy, axis=0) ** 2, axis=1)) ** (1 / 2)
    #Normalize the arclengths to a unit total
    chordlen = chordlen / np.sum(chordlen)
    #cumulative arclength
    cumarc = np.append(0, np.cumsum(chordlen))

    tbins= np.digitize(N, cumarc) # bin index in which each N is in

    #catch any problems at the ends
    tbins[np.where(tbins<=0 | (N<=0))]=1
    tbins[np.where(tbins >= n | (N >= 1))] = n - 1      

    s = np.divide((N - cumarc[tbins]), chordlen[tbins-1])
    pt = pxy[tbins,:] + np.multiply((pxy[tbins,:] - pxy[tbins-1,:]), (np.vstack([s]*2)).T)

    return pt 



def segmentation(img, vertical):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #plt.imshow(img, cmap=plt.cm.gray)
    if vertical:
        background_0 = np.ones((img.shape)) + 254
        background_0[img.shape[0]//2:, :] = img[img.shape[0]//2:,:] 
        #plt.imshow(background_0, cmap=plt.cm.gray)
        #fig = plt.figure()

        background_1 = np.ones((img.shape)) + 254
        background_1[:img.shape[0]//2, :] = img[:img.shape[0]//2,:] 
        #plt.imshow(background_1, cmap=plt.cm.gray)
        #fig = plt.figure()
         

    else:
        background_1 = np.ones((img.shape)) + 254
        background_1[:, :img.shape[0]//2] = img[:,:img.shape[0]//2] 
        #plt.imshow(background_0, cmap=plt.cm.gray)
        #fig = plt.figure()


        background_0 = np.ones((img.shape)) + 254
        background_0[:, img.shape[0]//2:] = img[:,img.shape[0]//2:] 
        #plt.imshow(background_1, cmap=plt.cm.gray)
        #fig = plt.figure()
    
    return background_0, background_1

def plotTwoImages(img_1, img_2, title):
    plt.figure(figsize=(12,5))
    plt.subplot(1, 2, 1)

    plt.imshow(img_1)
    plt.title(title[0])
    plt.xticks([])
    plt.yticks([])
    plt.subplot(1, 2, 2)
    
    plt.imshow(img_2)
    plt.xticks([])
    plt.yticks([])
    plt.title(title[1])
    
def plotLandmarks(landmarks_img_1_part_2, landmarks_img_2_part_2, title, comparateShow=True):
    plt.figure(figsize=(12,5))
    size = (1, 2)
    if comparateShow:
        size = (1, 3)
    plt.subplot( size[0],  size[1], 1)
    plt.plot(landmarks_img_1_part_2[:,0], landmarks_img_1_part_2[:,1], '-o')
    plt.fill(landmarks_img_1_part_2[:, 0] , landmarks_img_1_part_2[:, 1], 'k')
    plt.title(title[0])
    plt.xticks([])
    plt.yticks([])


    plt.subplot(size[0], size[1], 2)
    plt.plot(landmarks_img_2_part_2[:,0], landmarks_img_2_part_2[:,1], '-o')
    plt.fill(landmarks_img_2_part_2[:, 0] , landmarks_img_2_part_2[:, 1], 'k')
    plt.title(title[1])
    plt.xticks([])
    plt.yticks([])


    if comparateShow:
        plt.subplot(size[0], size[1], 3)
        plt.plot(landmarks_img_1_part_2[:,0], landmarks_img_1_part_2[:,1], '-o')
        plt.plot(landmarks_img_2_part_2[:,0], landmarks_img_2_part_2[:,1], '-o')
        plt.title(title[2])
        plt.xticks([])
        plt.yticks([])

def plotLandmarks2(landmarks_img_1_part_2, landmarks_img_2_part_2, title, comparateShow=True):
    plt.figure(figsize=(12,5))
    fig, (ax1) = plt.subplots(1, 1, figsize=(12,5))
    ax1.axis("off")
    landmarks_img_1_part_2 = landmarks_img_1_part_2 * -1
    landmarks_img_2_part_2 = landmarks_img_2_part_2 * -1
    ax1.plot(landmarks_img_1_part_2[:,1], landmarks_img_1_part_2[:,0], '-o')
    ax1.plot(landmarks_img_2_part_2[:,1], landmarks_img_2_part_2[:,0], '-o')
    plt.title(title[2])
    ax1.set_aspect(2)
    plt.xticks([])
    plt.yticks([])
    

def plotLandmarksItem(fig, ax1, landmarks_img_1_part_2, landmarks_img_2_part_2, title, comparateShow=True):
    ax1.axis("off")
    landmarks_img_1_part_2 = landmarks_img_1_part_2 * -1
    landmarks_img_2_part_2 = landmarks_img_2_part_2 * -1
    ax1.plot(landmarks_img_1_part_2[:,1], landmarks_img_1_part_2[:,0], '-o')
    ax1.plot(landmarks_img_2_part_2[:,1], landmarks_img_2_part_2[:,0], '-o')
    ax1.set_title(title)
    ax1.set_aspect(1)
    

def plotLandmarksALL(img_0, img_1, landmarks_img_1_part_1, landmarks_img_2_part_1, landmarks_img_1_part_2, landmarks_img_2_part_2, title):
    plt.figure(figsize=(12,5))
    fig, (ax0, ax1, ax2, ax3) = plt.subplots(1, 4, figsize=(12,5))
    ax0.axis("off")
    ax0.set_title('INPUT')
    ax3.axis("off")
    ax3.set_title('OUTPUT')
    plt.xticks([])
    plt.yticks([])
    ax0.imshow(img_0)
    plotLandmarksItem(fig, ax1, landmarks_img_1_part_1, landmarks_img_2_part_1, title[0])
    plotLandmarksItem(fig, ax2, landmarks_img_1_part_2, landmarks_img_2_part_2, title[1])
    ax3.imshow(img_1)
    plt.xticks([])
    plt.yticks([])




if __name__ == "__main__":
    pass