Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,214 Bytes
71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec d05f06b 71d3bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import torch
from PIL import Image
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
from huggingface_hub import hf_hub_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
from model import pops_utils
from model.pipeline_pops import pOpsPipeline
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
prior_scene_repo: str = 'models/scene/learned_prior.pth'
prior_repo = "pOpsPaper/operators"
# gpu = torch.device('cuda')
# cpu = torch.device('cpu')
class PopsPipelines:
def __init__(self):
weight_dtype = torch.float16
self.weight_dtype = weight_dtype
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = 'cuda' #device
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
subfolder='image_encoder',
torch_dtype=weight_dtype).eval()
self.image_encoder.requires_grad_(False)
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
subfolder='image_processor')
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
subfolder='text_encoder',
torch_dtype=weight_dtype).eval().to(device)
# Load full model for vis
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
subfolder='unet').to(torch.float16).to(device)
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
torch_dtype=torch.float16)
self.decoder = self.decoder.to(device)
self.priors_dict = {
'texturing':{'repo':prior_texture_repo},
'instruct': {'repo': prior_instruct_repo},
'scene': {'repo':prior_scene_repo}
}
for prior_type in self.priors_dict:
prior_path = self.priors_dict[prior_type]['repo']
prior = PriorTransformer.from_pretrained(
kandinsky_prior_repo, subfolder="prior"
)
# Load from huggingface
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
prior_state_dict = torch.load(prior_path, map_location=device)
prior.load_state_dict(prior_state_dict, strict=False)
prior.eval()
prior = prior.to(weight_dtype)
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
prior=prior,
image_encoder=self.image_encoder,
torch_dtype=torch.float16)
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
def process_image(self, input_path):
if input_path is None:
return None
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
self.weight_dtype)
return image
def process_text(self, text):
self.text_encoder.to('cuda')
text_inputs = self.tokenizer(
text,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
mask = text_inputs.attention_mask.bool() # [0]
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
text_encoder_hidden_states = text_encoder_output.last_hidden_state
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
self.text_encoder.to('cpu')
return text_encoder_concat
def run_binary(self, input_a, input_b, prior_type):
# Move pipeline to GPU
pipeline = self.priors_dict[prior_type]['pipeline']
pipeline.to('cuda')
self.image_encoder.to('cuda')
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
self.image_encoder,
pipeline.prior.clip_mean.detach(),
pipeline.prior.clip_std.detach())
negative_input_embeds = torch.zeros_like(input_image_embeds)
negative_hidden_states = torch.zeros_like(input_hidden_state)
guidance_scale = 1.0
if prior_type == 'texturing':
guidance_scale = 8.0
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
negative_input_embeds=negative_input_embeds,
negative_input_hidden_states=negative_hidden_states,
num_inference_steps=25,
num_images_per_prompt=1,
guidance_scale=guidance_scale)
# Optional
if prior_type == 'scene':
# Scene is the closet to what avg represents for a background image so incorporate that as well
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
alpha = 0.4
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
# Move pipeline to CPU
pipeline.to('cpu')
self.image_encoder.to('cpu')
return img_emb
def run_instruct(self, input_a, text):
text_encodings = self.process_text(text)
# Move pipeline to GPU
instruct_pipeline = self.priors_dict['instruct']['pipeline']
instruct_pipeline.to('cuda')
self.image_encoder.to('cuda')
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
self.image_encoder,
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
concat_hidden_states=text_encodings)
negative_input_embeds = torch.zeros_like(input_image_embeds)
negative_hidden_states = torch.zeros_like(input_hidden_state)
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
negative_input_embeds=negative_input_embeds,
negative_input_hidden_states=negative_hidden_states,
num_inference_steps=25,
num_images_per_prompt=1,
guidance_scale=1.0)
# Move pipeline to CPU
instruct_pipeline.to('cpu')
self.image_encoder.to('cpu')
return img_emb
def render(self, img_emb):
self.decoder.to('cuda')
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
num_inference_steps=50, height=512,
width=512, guidance_scale=4).images
self.decoder.to('cpu')
return images[0]
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
# Process both inputs
image_object = self.process_image(image_object_path)
image_texture = self.process_image(image_texture_path)
if image_object is None:
raise gr.Error('Object image is required')
current_emb = None
if image_texture is None:
instruct_input = image_object
else:
# Run texturing
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
instruct_input = current_emb.image_embeds
if text_instruct != '':
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
if current_emb is None:
raise gr.Error('At least one of the inputs is required')
# Render as image
image = self.render(current_emb)
return image
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
# Process both inputs
image_object = self.process_image(image_object_path)
image_texture = self.process_image(image_texture_path)
image_scene = self.process_image(image_scene_path)
if image_object is None:
raise gr.Error('Object image is required')
current_emb = None
if image_texture is None:
scene_input = image_object
else:
# Run texturing
current_emb = self.run_binary(input_a=image_object, input_b=image_scene,prior_type='scene')
scene_input = current_emb.image_embeds
# Run scene
if image_scene is not None:
current_emb = self.run_binary(input_a=scene_input, input_b=image_texture,prior_type='texturing')
if current_emb is None:
raise gr.Error('At least one of the images is required')
# Render as image
image = self.render(current_emb)
return image
|