File size: 6,560 Bytes
e437acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable


class Encoder(nn.Module):
    def __init__(self, hdim=256):
        super(Encoder, self).__init__()

        self.hdim = hdim

        self.main = nn.Sequential(
            nn.Conv2d(3, 32, 5, 2, 2, bias=False),
            nn.InstanceNorm2d(32, eps=0.001),
            nn.LeakyReLU(0.2),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 32, 64),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 64, 128),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 128, 256),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 256, 512),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 512, 512)
        )

        # mu and logvar
        self.fc = nn.Linear(512 * 4 * 4, 2 * hdim)

    def forward(self, x):
        z = self.main(x).view(x.size(0), -1)
        z = self.fc(z)
        mu, logvar = torch.split(z, split_size_or_sections=self.hdim, dim=-1)

        return mu, logvar


class Encoder_s(nn.Module):
    def __init__(self, hdim=256):
        super(Encoder_s, self).__init__()

        self.hdim = hdim

        self.main = nn.Sequential(
            nn.Conv2d(3, 32, 5, 2, 2, bias=False),
            nn.InstanceNorm2d(32, eps=0.001),
            nn.LeakyReLU(0.2),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 32, 64),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 64, 128),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 128, 256),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 256, 512),
            nn.AvgPool2d(2),
            make_layer(_Residual_Block, 1, 512, 512)
        )

        # mu and logvar
        self.fc = nn.Linear(512 * 4 * 4, 4 * hdim)
        # self.fc_at = nn.Linear(hdim, attack_type)

    def forward(self, x):
        z = self.main(x).view(x.size(0), -1)
        z = self.fc(z)
        mu, logvar, mu_a, logvar_a = torch.split(z, split_size_or_sections=self.hdim, dim=-1)
        # a_type = self.fc_at(a_t)

        return mu, logvar, mu_a, logvar_a


class Cls(nn.Module):
    def __init__(self, hdim=256, attack_type=4):
        super(Cls, self).__init__()

        self.fc = nn.Linear(hdim, attack_type)

    def forward(self, x):
        a_cls = self.fc(x)

        return a_cls

class Decoder(nn.Module):
    def __init__(self, hdim=256):
        super(Decoder, self).__init__()

        self.fc = nn.Sequential(
            nn.Linear(hdim, 512 * 4 * 4),
            nn.ReLU(True)
        )

        self.main = nn.Sequential(
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 256),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 256, 128),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 2, 128, 64),
            nn.Upsample(scale_factor=2, mode='nearest'),
            nn.Conv2d(64, 3 + 3, 5, 1, 2)
        )

    def forward(self, z):
        z = z.view(z.size(0), -1)
        y = self.fc(z)
        x = y.view(z.size(0), -1, 4, 4)
        img = torch.sigmoid(self.main(x))
        return img


class Decoder_s(nn.Module):
    def __init__(self, hdim=256):
        super(Decoder_s, self).__init__()

        self.fc = nn.Sequential(
            nn.Linear(3 * hdim, 512 * 4 * 4),
            nn.ReLU(True)
        )

        self.main = nn.Sequential(
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 512),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 512, 256),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 1, 256, 128),
            nn.Upsample(scale_factor=2, mode='nearest'),
            make_layer(_Residual_Block, 2, 128, 64),
            nn.Upsample(scale_factor=2, mode='nearest'),
            nn.Conv2d(64, 3 + 3, 5, 1, 2)
        )

    def forward(self, z):
        z = z.view(z.size(0), -1)
        y = self.fc(z)
        x = y.view(z.size(0), -1, 4, 4)
        img = torch.sigmoid(self.main(x))
        return img


class _Residual_Block(nn.Module):
    def __init__(self, inc=64, outc=64, groups=1):
        super(_Residual_Block, self).__init__()

        if inc is not outc:
            self.conv_expand = nn.Conv2d(in_channels=inc, out_channels=outc, kernel_size=1, stride=1, padding=0,
                                         groups=1, bias=False)
        else:
            self.conv_expand = None

        self.conv1 = nn.Conv2d(in_channels=inc, out_channels=outc, kernel_size=3, stride=1, padding=1, groups=groups,
                               bias=False)
        self.bn1 = nn.InstanceNorm2d(outc, eps=0.001)
        self.relu1 = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = nn.Conv2d(in_channels=outc, out_channels=outc, kernel_size=3, stride=1, padding=1, groups=groups,
                               bias=False)
        self.bn2 = nn.InstanceNorm2d(outc, eps=0.001)
        self.relu2 = nn.LeakyReLU(0.2, inplace=True)

    def forward(self, x):
        if self.conv_expand is not None:
            identity_data = self.conv_expand(x)
        else:
            identity_data = x

        output = self.relu1(self.bn1(self.conv1(x)))
        output = self.conv2(output)
        output = self.relu2(self.bn2(torch.add(output, identity_data)))
        return output


def make_layer(block, num_of_layer, inc=64, outc=64, groups=1):
    if num_of_layer < 1:
        num_of_layer = 1
    layers = []
    layers.append(block(inc=inc, outc=outc, groups=groups))
    for _ in range(1, num_of_layer):
        layers.append(block(inc=outc, outc=outc, groups=groups))
    return nn.Sequential(*layers)