File size: 19,398 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import random
import os
import PIL
import torch
import warnings
warnings.filterwarnings("ignore")

from transformers import set_seed
from tqdm import tqdm
from transformers import logging
from diffusers import ControlNetModel, StableDiffusionControlNetImg2ImgPipeline, DDIMScheduler

import torch.nn as nn
import numpy as np
import utils.feature_utils as fu
import utils.preprocesser_utils as pu
import utils.image_process_utils as ipu


logging.set_verbosity_error()

def set_seed_lib(seed):
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    random.seed(seed)
    set_seed(seed)

@torch.no_grad()
class RAVE(nn.Module):
    def __init__(self, device):
        super().__init__()

        self.device = device
        self.dtype = torch.float

    @torch.no_grad()
    def __init_pipe(self, hf_cn_path, hf_path):
        controlnet = ControlNetModel.from_pretrained(hf_cn_path, torch_dtype=self.dtype).to(self.device, self.dtype)

        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(hf_path, controlnet=controlnet, torch_dtype=self.dtype).to(self.device, self.dtype) 
        pipe.enable_model_cpu_offload()
        pipe.enable_xformers_memory_efficient_attention()
        return pipe
        
    @torch.no_grad()
    def init_models(self, hf_cn_path, hf_path, preprocess_name, model_id=None):
        if model_id is None or model_id == "None":
            pipe = self.__init_pipe(hf_cn_path, hf_path)  
        else:
            pipe = self.__init_pipe(hf_cn_path, model_id)  
        self.preprocess_name = preprocess_name
        
        
        self._prepare_control_image = pipe.prepare_control_image
        self.run_safety_checker = pipe.run_safety_checker
        self.tokenizer = pipe.tokenizer
        self.text_encoder = pipe.text_encoder

        self.vae = pipe.vae
        self.unet = pipe.unet    

        self.controlnet = pipe.controlnet
        self.scheduler_config = pipe.scheduler.config        
        
        del pipe
    
    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt):

        cond_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
        cond_embeddings = self.text_encoder(cond_input.input_ids.to(self.device))[0]


        uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')

        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]


        return cond_embeddings, uncond_embeddings

    @torch.no_grad()
    def prepare_control_image(self, control_pil, width, height):

        control_image = self._prepare_control_image(
        image=control_pil,
        width=width,
        height=height,
        device=self.device,
        dtype=self.controlnet.dtype,
        batch_size=1,
        num_images_per_prompt=1
    )

        return control_image
    
    @torch.no_grad()
    def pred_controlnet_sampling(self, current_sampling_percent, latent_model_input, t, text_embeddings, control_image):
        if (current_sampling_percent < self.controlnet_guidance_start or current_sampling_percent > self.controlnet_guidance_end):
            down_block_res_samples = None
            mid_block_res_sample = None
        else:
            
            down_block_res_samples, mid_block_res_sample = self.controlnet(
                latent_model_input,
                t,
                conditioning_scale=self.controlnet_conditioning_scale,
                encoder_hidden_states=text_embeddings,
                controlnet_cond=control_image,
                return_dict=False,
            )
        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings,                    
                            down_block_additional_residuals=down_block_res_samples,
                            mid_block_additional_residual=mid_block_res_sample)['sample']
        return noise_pred
    
    
    @torch.no_grad()
    def denoising_step(self, latents, control_image, text_embeddings, t, guidance_scale, current_sampling_percent):
        
        latent_model_input = torch.cat([latents] * 2)
        control_image = torch.cat([control_image] * 2)
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)


        noise_pred = self.pred_controlnet_sampling(current_sampling_percent, latent_model_input, t, text_embeddings, control_image)

        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        
        latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
        return latents


    @torch.no_grad()
    def preprocess_control_grid(self, image_pil):

        list_of_image_pils = fu.pil_grid_to_frames(image_pil, grid_size=self.grid) # List[C, W, H] -> len = num_frames
        list_of_pils = [pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name) for frame_pil in list_of_image_pils]
        control_images = np.array(list_of_pils)
        control_img = ipu.create_grid_from_numpy(control_images, grid_size=self.grid)
        control_img = PIL.Image.fromarray(control_img).convert("L")

        return control_img
    
    @torch.no_grad()
    def shuffle_latents(self, latents, control_image, indices):
        rand_i = torch.randperm(self.total_frame_number).tolist()
        
        latents_l, controls_l, randx = [], [], []
        for j in range(self.sample_size):
            rand_indices = rand_i[j*self.grid_frame_number:(j+1)*self.grid_frame_number]

            latents_keyframe, _ = fu.prepare_key_grid_latents(latents, self.grid, self.grid, rand_indices)
            control_keyframe, _ = fu.prepare_key_grid_latents(control_image, self.grid, self.grid, rand_indices)
            latents_l.append(latents_keyframe)
            controls_l.append(control_keyframe)
            randx.extend(rand_indices)
        rand_i = randx.copy()
        latents = torch.cat(latents_l, dim=0)
        control_image = torch.cat(controls_l, dim=0)
        indices = [indices[i] for i in rand_i]
        return latents, indices, control_image
    
    @torch.no_grad()
    def batch_denoise(self, latents, control_image, indices, t, guidance_scale, current_sampling_percent):
        latents_l, controls_l = [], []
        control_split = control_image.split(self.batch_size, dim=0)
        latents_split = latents.split(self.batch_size, dim=0)
        for idx in range(len(control_split)):
            txt_embed = torch.cat([self.uncond_embeddings] * len(latents_split[idx]) + [self.cond_embeddings] * len(latents_split[idx])) 


            latents = self.denoising_step(latents_split[idx], control_split[idx], txt_embed, t, guidance_scale, current_sampling_percent)
            
            latents_l.append(latents)
            controls_l.append(control_split[idx])
        latents = torch.cat(latents_l, dim=0)
        controls = torch.cat(controls_l, dim=0)
        return latents, indices, controls
    
    @torch.no_grad()
    def reverse_diffusion(self, latents=None, control_image=None, guidance_scale=7.5, indices=None):
        self.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
        with torch.autocast('cuda'):

            for i, t in tqdm(enumerate(self.scheduler.timesteps), desc='reverse_diffusion'):
                indices = list(indices)
                current_sampling_percent = i / len(self.scheduler.timesteps)

                if self.is_shuffle:
                    latents, indices, control_image = self.shuffle_latents(latents, control_image, indices)
                    
                if self.cond_step_start < current_sampling_percent:
                    latents, indices, controls = self.batch_denoise(latents, control_image, indices, t, guidance_scale, current_sampling_percent)
                else:
                    latents, indices, controls = self.batch_denoise(latents, control_image, indices, t, 0.0, current_sampling_percent)

        return latents, indices, controls

    @torch.no_grad()
    def encode_imgs(self, img_torch):
        latents_l = []
        splits = img_torch.split(self.batch_size_vae, dim=0)
        for split in splits:
            image = 2 * split - 1
            posterior = self.vae.encode(image).latent_dist
            latents = posterior.mean * self.vae.config.scaling_factor
            latents_l.append(latents)
        

        return torch.cat(latents_l, dim=0)

    @torch.no_grad()
    def decode_latents(self, latents: torch.Tensor):
        image_l = []
        splits = latents.split(self.batch_size_vae, dim=0)
        for split in splits:
            image = self.vae.decode(split / self.vae.config.scaling_factor, return_dict=False)[0]
            image = (image / 2 + 0.5).clamp(0, 1)
            image_l.append(image)
        return torch.cat(image_l, dim=0)




    @torch.no_grad()
    def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            controlnet_cond=controlnet_cond,
            conditioning_scale=1,
            return_dict=False,
        )
        noise_pred = self.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            cross_attention_kwargs={},
            down_block_additional_residuals=down_block_res_samples,
            mid_block_additional_residual=mid_block_res_sample,
            return_dict=False,
        )[0]
        return noise_pred

    @torch.no_grad()
    def ddim_inversion(self, latents, control_batch, indices):
        k = None
        els = os.listdir(self.inverse_path) 
        els = [el for el in els if el.endswith('.pt')]

        for k,inv_path in enumerate(sorted(els, key=lambda x: int(x.split('.')[0]))):
            latents[k] = torch.load(os.path.join(self.inverse_path, inv_path)).to(device=self.device)

        self.inverse_scheduler = DDIMScheduler.from_config(self.scheduler_config)
        self.inverse_scheduler.set_timesteps(self.num_inversion_step, device=self.device)
        self.timesteps = reversed(self.inverse_scheduler.timesteps)

        if k == (latents.shape[0]-1):
            return latents, indices, control_batch
        inv_cond = torch.cat([self.inv_uncond_embeddings] * 1 + [self.inv_cond_embeddings] * 1)[1].unsqueeze(0)
        for i, t in enumerate(tqdm(self.timesteps)):
            
            alpha_prod_t = self.inverse_scheduler.alphas_cumprod[t]
            alpha_prod_t_prev = (self.inverse_scheduler.alphas_cumprod[self.timesteps[i - 1]] if i > 0 else self.inverse_scheduler.final_alpha_cumprod)
            
            if k is not None:
                if len(latents[:k+1].shape) == 3:
                    latents[:k+1] = latents[:k+1].unsqueeze(0)
            latents_l = [] if k is None else [latents[:k+1]]
            latents_split = latents.split(self.inv_batch_size, dim=0) if k is None else latents[k+1:].split(self.inv_batch_size, dim=0)
            control_batch_split = control_batch.split(self.inv_batch_size, dim=0) if k is None else control_batch[k+1:].split(self.inv_batch_size, dim=0)
            for idx in range(len(latents_split)):
                cond_batch = inv_cond.repeat(latents_split[idx].shape[0], 1, 1)
                latents = self.ddim_step(latents_split[idx], t, cond_batch, alpha_prod_t, alpha_prod_t_prev, control_batch_split[idx])
                latents_l.append(latents)
            latents = torch.cat(latents_l, dim=0)
            
        for k,i in enumerate(latents):
            torch.save(i.detach().cpu(), f'{self.inverse_path}/{str(k).zfill(5)}.pt')        

        return latents, indices, control_batch
    
   
    def ddim_step(self, latent_frames, t, cond_batch, alpha_prod_t, alpha_prod_t_prev, control_batch):
        mu = alpha_prod_t ** 0.5
        mu_prev = alpha_prod_t_prev ** 0.5
        sigma = (1 - alpha_prod_t) ** 0.5
        sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
        if self.give_control_inversion:
            eps = self.controlnet_pred(latent_frames, t, text_embed_input=cond_batch, controlnet_cond=control_batch)
        else:
            eps = self.unet(latent_frames, t, encoder_hidden_states=cond_batch, return_dict=False)[0]
        pred_x0 = (latent_frames - sigma_prev * eps) / mu_prev
        latent_frames = mu * pred_x0 + sigma * eps
        return latent_frames
    

    def process_image_batch(self, image_pil_list):
        if len(os.listdir(self.controls_path)) > 0:
            control_torch = torch.load(os.path.join(self.controls_path, 'control.pt')).to(self.device)
            img_torch = torch.load(os.path.join(self.controls_path, 'img.pt')).to(self.device)
        else:
            image_torch_list = []
            control_torch_list = []
            for image_pil in image_pil_list:
                width, height = image_pil.size
                control_pil = self.preprocess_control_grid(image_pil)
                control_image = self.prepare_control_image(control_pil, width, height)
                control_torch_list.append(control_image)
                image_torch_list.append(ipu.pil_img_to_torch_tensor(image_pil))
            control_torch = torch.cat(control_torch_list, dim=0).to(self.device)
            img_torch = torch.cat(image_torch_list, dim=0).to(self.device)
            torch.save(control_torch, os.path.join(self.controls_path, 'control.pt'))
            torch.save(img_torch, os.path.join(self.controls_path, 'img.pt'))
            
        return img_torch, control_torch
        
    def order_grids(self, list_of_pils, indices):
        k = []
        for i in range(len(list_of_pils)):
            k.extend(fu.pil_grid_to_frames(list_of_pils[i], self.grid))
            
        frames = [k[indices.index(i)] for i in np.arange(len(indices))]    
        return frames


    @torch.autocast(dtype=torch.float16, device_type='cuda')  
    def batched_denoise_step(self, x, t, indices):
        batch_size = self.config["batch_size"]
        denoised_latents = []
        pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size) 
        
        self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
        for i, b in enumerate(range(0, len(x), batch_size)):
            denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
        denoised_latents = torch.cat(denoised_latents)
        return denoised_latents

    @torch.no_grad()
    def __preprocess_inversion_input(self, init_latents, control_batch):
        list_of_flattens = [fu.flatten_grid(el.unsqueeze(0), self.grid) for el in init_latents]
        init_latents = torch.cat(list_of_flattens, dim=-1)
        init_latents = torch.cat(torch.chunk(init_latents, self.total_frame_number, dim=-1), dim=0)
        control_batch_flattens = [fu.flatten_grid(el.unsqueeze(0), self.grid) for el in control_batch]
        control_batch = torch.cat(control_batch_flattens, dim=-1)
        control_batch = torch.cat(torch.chunk(control_batch, self.total_frame_number, dim=-1), dim=0)
        return init_latents, control_batch
    
    @torch.no_grad()
    def __postprocess_inversion_input(self, latents_inverted, control_batch):
            latents_inverted = torch.cat([fu.unflatten_grid(torch.cat([a for a in latents_inverted[i*self.grid_frame_number:(i+1)*self.grid_frame_number]], dim=-1).unsqueeze(0), self.grid) for i in range(self.sample_size)] , dim=0)
            control_batch = torch.cat([fu.unflatten_grid(torch.cat([a for a in control_batch[i*self.grid_frame_number:(i+1)*self.grid_frame_number]], dim=-1).unsqueeze(0), self.grid) for i in range(self.sample_size)] , dim=0)
            return latents_inverted, control_batch
    
    
    @torch.no_grad()
    def __call__(self, input_dict):
        set_seed_lib(input_dict['seed'])
        
        self.grid_size = input_dict['grid_size']
        self.sample_size = input_dict['sample_size']
        
        self.grid_frame_number = self.grid_size * self.grid_size
        self.total_frame_number = (self.grid_frame_number) * self.sample_size
        self.grid = [self.grid_size, self.grid_size]
        
        self.cond_step_start = input_dict['cond_step_start']
        
        self.controlnet_guidance_start = input_dict['controlnet_guidance_start']
        self.controlnet_guidance_end = input_dict['controlnet_guidance_end']
        self.controlnet_conditioning_scale = input_dict['controlnet_conditioning_scale']
        
        self.positive_prompts = input_dict['positive_prompts']
        self.negative_prompts = input_dict['negative_prompts']
        self.inversion_prompt = input_dict['inversion_prompt']
        
        self.batch_size = input_dict['batch_size']
        self.inv_batch_size = self.batch_size * self.grid_size * self.grid_size
        self.batch_size_vae = input_dict['batch_size_vae']

        self.num_inference_steps = input_dict['num_inference_steps']
        self.num_inversion_step = input_dict['num_inversion_step']
        self.inverse_path = input_dict['inverse_path']
        self.controls_path = input_dict['control_path']
        
        self.is_ddim_inversion = input_dict['is_ddim_inversion']
        self.is_shuffle = input_dict['is_shuffle']
        self.give_control_inversion = input_dict['give_control_inversion']
        
        self.guidance_scale = input_dict['guidance_scale']
        
        indices = list(np.arange(self.total_frame_number))
        
        
        img_batch, control_batch = self.process_image_batch(input_dict['image_pil_list'])
        init_latents_pre = self.encode_imgs(img_batch)
        
        self.scheduler = DDIMScheduler.from_config(self.scheduler_config)
        self.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
        self.inv_cond_embeddings, self.inv_uncond_embeddings = self.get_text_embeds(self.inversion_prompt, "")
        if self.is_ddim_inversion:
            init_latents, control_batch = self.__preprocess_inversion_input(init_latents_pre, control_batch)
            latents_inverted, indices, control_batch = self.ddim_inversion(init_latents, control_batch, indices)
            latents_inverted, control_batch = self.__postprocess_inversion_input(latents_inverted, control_batch)
        else:
            init_latents_pre = torch.cat([init_latents_pre], dim=0) 
            noise = torch.randn_like(init_latents_pre)
            latents_inverted = self.scheduler.add_noise(init_latents_pre, noise, self.scheduler.timesteps[:1])

        self.cond_embeddings, self.uncond_embeddings = self.get_text_embeds(self.positive_prompts, self.negative_prompts)
        latents_denoised, indices, controls = self.reverse_diffusion(latents_inverted, control_batch, self.guidance_scale, indices=indices)
    
        image_torch = self.decode_latents(latents_denoised)
        ordered_img_frames = self.order_grids(ipu.torch_to_pil_img_batch(image_torch), indices)
        ordered_control_frames = self.order_grids(ipu.torch_to_pil_img_batch(controls), indices)
        return ordered_img_frames, ordered_control_frames