Spaces:
Sleeping
Sleeping
File size: 6,464 Bytes
d72812e 1b0b842 5a6cca7 648b3ba d72812e 1b0b842 d72812e 0adc8b9 d72812e 648b3ba d72812e 0249b26 d72812e 648b3ba 1b0b842 d72812e 34f6b5d 648b3ba d72812e 34f6b5d d72812e 7f2b715 d72812e 1b0b842 d72812e 1b0b842 e501dea 0249b26 d72812e 7f2b715 ace3461 7f2b715 d72812e 1b0b842 d72812e 1b0b842 d72812e ace3461 d72812e 1b0b842 d72812e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import concurrent
import os
import tempfile
from typing import Optional, Tuple
import numpy as np
import spaces
from transformers import pipeline
import gradio as gr
import torch
import torchaudio
from resemble_enhance.enhancer.inference import denoise, enhance
from flore200_codes import flores_codes
from tts import BambaraTTS
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Translation pipeline
translation_model = "oza75/nllb-600M-mt-french-bambara"
translator = pipeline("translation", model=translation_model, max_length=512)
# Text-to-Speech pipeline
tts_model = "oza75/bambara-tts"
tts = BambaraTTS(tts_model)
# Function to translate text to Bambara
@spaces.GPU
def translate_to_bambara(text, src_lang):
translation = translator(text, src_lang=src_lang, tgt_lang="bam_Latn")
return str(translation[0]['translation_text'])
# Function to convert text to speech
@spaces.GPU
def text_to_speech(bambara_text, reference_audio: Optional[Tuple] = None):
if reference_audio is not None:
ref_sr, ref_audio = reference_audio
ref_audio = torch.from_numpy(ref_audio)
# Add a channel dimension if the audio is 1D
if ref_audio.ndim == 1:
ref_audio = ref_audio.unsqueeze(0)
# Save the reference audio to a temporary file if it's not None
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp:
torchaudio.save(tmp.name, ref_audio, ref_sr)
tmp_path = tmp.name
# Use the temporary file as the speaker reference
sr, audio = tts.text_to_speech(bambara_text, speaker_reference_wav_path=tmp_path)
# Clean up the temporary file
os.unlink(tmp_path)
else:
# If no reference audio provided, proceed with the default
sr, audio = tts.text_to_speech(bambara_text)
audio = audio.mean(dim=0)
return audio, sr
# Function to enhance speech
# @spaces.GPU
# def enhance_speech(audio_array, sampling_rate, solver, nfe, tau, denoise_before_enhancement):
# solver = solver.lower()
# nfe = int(nfe)
# lambd = 0.9 if denoise_before_enhancement else 0.1
#
# @spaces.GPU(duration=360)
# def denoise_audio():
# try:
# return denoise(audio_array, sampling_rate, device)
# except Exception as e:
# print("> Error while denoising : ", str(e))
# return audio_array, sampling_rate
#
# @spaces.GPU(duration=360)
# def enhance_audio():
# try:
# return enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
# except Exception as e:
# print("> Error while enhancement : ", str(e))
# return audio_array, sampling_rate
#
# with concurrent.futures.ThreadPoolExecutor() as executor:
# future_denoise = executor.submit(denoise_audio)
# future_enhance = executor.submit(enhance_audio)
#
# denoised_audio, new_sr1 = future_denoise.result()
# enhanced_audio, new_sr2 = future_enhance.result()
#
# # Convert to numpy and return
# return (new_sr1, denoised_audio.cpu().numpy()), (new_sr2, enhanced_audio.cpu().numpy())
@spaces.GPU
def enhance_speech(audio_array, sampling_rate, solver, nfe, tau, denoise_before_enhancement):
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9 if denoise_before_enhancement else 0.1
denoised_audio, new_sr1 = denoise(audio_array, sampling_rate, device)
enhanced_audio, new_sr2 = enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
# Convert to numpy and return
return (new_sr1, denoised_audio.cpu().numpy()), (new_sr2, enhanced_audio.cpu().numpy())
def convert_to_int16(audio_array):
if audio_array.dtype == torch.float32:
# Assuming audio_array values are in the range [-1.0, 1.0]
# Scale to int16 range and convert the datatype
audio_array = (audio_array * 32767).to(torch.int16)
return audio_array
# Define the Gradio interface
def _fn(
src_lang,
text,
reference_audio=None,
solver="Midpoint",
nfe=64,
prior_temp=0.5,
denoise_before_enhancement=False
):
source_lang = flores_codes[src_lang]
# Step 1: Translate the text to Bambara
bambara_text = translate_to_bambara(text, source_lang)
# Step 2: Convert the translated text to speech with reference audio
if reference_audio is not None:
audio_array, sampling_rate = text_to_speech(bambara_text, reference_audio)
else:
audio_array, sampling_rate = text_to_speech(bambara_text)
# # Step 3: Enhance the audio
# denoised_audio, enhanced_audio = enhance_speech(
# audio_array,
# sampling_rate,
# solver,
# nfe,
# prior_temp,
# denoise_before_enhancement
# )
# Return all outputs
return (
bambara_text,
# (sampling_rate, audio_array.numpy()),
# (denoised_audio[0], convert_to_int16(denoised_audio[1])),
# (enhanced_audio[0], convert_to_int16(enhanced_audio[1]))
)
def main():
lang_codes = list(flores_codes.keys())
# Build Gradio app
app = gr.Interface(
fn=_fn,
inputs=[
gr.Dropdown(label="Source Language", choices=lang_codes, value='French'),
gr.Textbox(label="Text to Translate", lines=3),
gr.Audio(label="Clone your voice (optional)", type="numpy", format="wav"),
gr.Dropdown(
choices=["Midpoint", "RK4", "Euler"], value="Midpoint",
label="ODE Solver (Midpoint is recommended)"
),
gr.Slider(minimum=1, maximum=128, value=64, step=1, label="Number of Function Evaluations"),
gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.01, label="Prior Temperature"),
gr.Checkbox(value=False, label="Denoise Before Enhancement")
],
outputs=[
gr.Textbox(label="Translated Text"),
# gr.Audio(label="Original TTS Audio"),
# gr.Audio(label="Denoised Audio"),
# gr.Audio(label="Enhanced Audio")
],
title="Bambara Translation and Text to Speech with Audio Enhancement",
description="Translate text to Bambara and convert it to speech with options to enhance audio quality."
)
app.launch(share=False)
if __name__ == "__main__":
main()
|