File size: 6,464 Bytes
d72812e
1b0b842
 
 
 
5a6cca7
648b3ba
d72812e
 
 
 
 
 
 
1b0b842
d72812e
 
 
 
 
 
 
 
 
0adc8b9
 
d72812e
 
 
648b3ba
d72812e
 
0249b26
d72812e
 
 
648b3ba
1b0b842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72812e
 
 
 
34f6b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648b3ba
d72812e
 
 
 
 
34f6b5d
 
 
 
 
d72812e
 
7f2b715
 
 
 
 
 
 
 
 
d72812e
1b0b842
 
 
 
 
 
 
 
 
d72812e
 
 
 
 
1b0b842
e501dea
 
 
 
 
0249b26
 
 
 
 
 
 
 
 
d72812e
 
7f2b715
 
ace3461
 
 
7f2b715
d72812e
 
 
 
 
 
 
 
 
 
1b0b842
 
d72812e
 
 
 
 
1b0b842
d72812e
 
 
 
ace3461
 
 
d72812e
 
 
 
 
1b0b842
d72812e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import concurrent
import os
import tempfile
from typing import Optional, Tuple

import numpy as np
import spaces
from transformers import pipeline
import gradio as gr
import torch
import torchaudio
from resemble_enhance.enhancer.inference import denoise, enhance

from flore200_codes import flores_codes
from tts import BambaraTTS

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Translation pipeline
translation_model = "oza75/nllb-600M-mt-french-bambara"
translator = pipeline("translation", model=translation_model, max_length=512)

# Text-to-Speech pipeline
tts_model = "oza75/bambara-tts"
tts = BambaraTTS(tts_model)


# Function to translate text to Bambara
@spaces.GPU
def translate_to_bambara(text, src_lang):
    translation = translator(text, src_lang=src_lang, tgt_lang="bam_Latn")
    return str(translation[0]['translation_text'])


# Function to convert text to speech
@spaces.GPU
def text_to_speech(bambara_text, reference_audio: Optional[Tuple] = None):
    if reference_audio is not None:
        ref_sr, ref_audio = reference_audio
        ref_audio = torch.from_numpy(ref_audio)

        # Add a channel dimension if the audio is 1D
        if ref_audio.ndim == 1:
            ref_audio = ref_audio.unsqueeze(0)

        # Save the reference audio to a temporary file if it's not None
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp:
            torchaudio.save(tmp.name, ref_audio, ref_sr)
            tmp_path = tmp.name

        # Use the temporary file as the speaker reference
        sr, audio = tts.text_to_speech(bambara_text, speaker_reference_wav_path=tmp_path)

        # Clean up the temporary file
        os.unlink(tmp_path)
    else:
        # If no reference audio provided, proceed with the default
        sr, audio = tts.text_to_speech(bambara_text)

    audio = audio.mean(dim=0)
    return audio, sr


# Function to enhance speech
# @spaces.GPU
# def enhance_speech(audio_array, sampling_rate, solver, nfe, tau, denoise_before_enhancement):
#     solver = solver.lower()
#     nfe = int(nfe)
#     lambd = 0.9 if denoise_before_enhancement else 0.1
#
#     @spaces.GPU(duration=360)
#     def denoise_audio():
#         try:
#             return denoise(audio_array, sampling_rate, device)
#         except Exception as e:
#             print("> Error while denoising : ", str(e))
#             return audio_array, sampling_rate
#
#     @spaces.GPU(duration=360)
#     def enhance_audio():
#         try:
#             return enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
#         except Exception as e:
#             print("> Error while enhancement : ", str(e))
#             return audio_array, sampling_rate
#
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         future_denoise = executor.submit(denoise_audio)
#         future_enhance = executor.submit(enhance_audio)
#
#         denoised_audio, new_sr1 = future_denoise.result()
#         enhanced_audio, new_sr2 = future_enhance.result()
#
#         # Convert to numpy and return
#         return (new_sr1, denoised_audio.cpu().numpy()), (new_sr2, enhanced_audio.cpu().numpy())

@spaces.GPU
def enhance_speech(audio_array, sampling_rate, solver, nfe, tau, denoise_before_enhancement):
    solver = solver.lower()
    nfe = int(nfe)
    lambd = 0.9 if denoise_before_enhancement else 0.1

    denoised_audio, new_sr1 = denoise(audio_array, sampling_rate, device)
    enhanced_audio, new_sr2 = enhance(audio_array, sampling_rate, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)

    # Convert to numpy and return
    return (new_sr1, denoised_audio.cpu().numpy()), (new_sr2, enhanced_audio.cpu().numpy())


def convert_to_int16(audio_array):
    if audio_array.dtype == torch.float32:
        # Assuming audio_array values are in the range [-1.0, 1.0]
        # Scale to int16 range and convert the datatype
        audio_array = (audio_array * 32767).to(torch.int16)

    return audio_array


# Define the Gradio interface
def _fn(
        src_lang,
        text,
        reference_audio=None,
        solver="Midpoint",
        nfe=64,
        prior_temp=0.5,
        denoise_before_enhancement=False
):
    source_lang = flores_codes[src_lang]

    # Step 1: Translate the text to Bambara
    bambara_text = translate_to_bambara(text, source_lang)

    # Step 2: Convert the translated text to speech with reference audio
    if reference_audio is not None:
        audio_array, sampling_rate = text_to_speech(bambara_text, reference_audio)
    else:
        audio_array, sampling_rate = text_to_speech(bambara_text)

    # # Step 3: Enhance the audio
    # denoised_audio, enhanced_audio = enhance_speech(
    #     audio_array,
    #     sampling_rate,
    #     solver,
    #     nfe,
    #     prior_temp,
    #     denoise_before_enhancement
    # )

    # Return all outputs
    return (
        bambara_text,
        # (sampling_rate, audio_array.numpy()),
        # (denoised_audio[0], convert_to_int16(denoised_audio[1])),
        # (enhanced_audio[0], convert_to_int16(enhanced_audio[1]))
    )


def main():
    lang_codes = list(flores_codes.keys())

    # Build Gradio app
    app = gr.Interface(
        fn=_fn,
        inputs=[
            gr.Dropdown(label="Source Language", choices=lang_codes, value='French'),
            gr.Textbox(label="Text to Translate", lines=3),
            gr.Audio(label="Clone your voice (optional)", type="numpy", format="wav"),
            gr.Dropdown(
                choices=["Midpoint", "RK4", "Euler"], value="Midpoint",
                label="ODE Solver (Midpoint is recommended)"
            ),
            gr.Slider(minimum=1, maximum=128, value=64, step=1, label="Number of Function Evaluations"),
            gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.01, label="Prior Temperature"),
            gr.Checkbox(value=False, label="Denoise Before Enhancement")
        ],
        outputs=[
            gr.Textbox(label="Translated Text"),
            # gr.Audio(label="Original TTS Audio"),
            # gr.Audio(label="Denoised Audio"),
            # gr.Audio(label="Enhanced Audio")
        ],
        title="Bambara Translation and Text to Speech with Audio Enhancement",
        description="Translate text to Bambara and convert it to speech with options to enhance audio quality."
    )

    app.launch(share=False)


if __name__ == "__main__":
    main()