File size: 11,297 Bytes
6381c79
f77813c
6381c79
 
 
 
 
f77813c
182f0d5
 
ba5770d
 
 
d37d209
de38782
182f0d5
6381c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d527cc3
f77813c
d527cc3
f77813c
d527cc3
f77813c
 
6381c79
 
 
 
 
 
 
 
 
 
 
 
33da899
 
 
 
ba5770d
6381c79
 
182f0d5
f7d9674
c686a8d
182f0d5
59593f5
 
 
182f0d5
 
de38782
ba5770d
 
 
081465c
ba5770d
 
 
 
 
 
 
 
 
f1ca883
ba5770d
49b322e
 
 
 
 
f1ca883
49b322e
d37d209
182f0d5
49b322e
ba5770d
d37d209
 
 
 
49b322e
ba5770d
6381c79
49b322e
ba5770d
 
 
 
182f0d5
d37d209
ba5770d
 
6381c79
ba5770d
 
d37d209
59593f5
ba5770d
 
 
 
a90253a
 
 
 
 
10d6431
ba5770d
 
 
59593f5
ac72687
 
f1ca883
ba5770d
 
49b322e
ba5770d
21dfb87
ba5770d
 
f1ca883
 
 
 
 
21dfb87
f1ca883
ba5770d
 
 
 
 
 
 
 
 
f1ca883
081465c
 
f1ca883
 
d8d1cda
 
f1ca883
 
d37d209
081465c
 
49b322e
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d1cda
 
 
 
 
 
 
 
49b322e
d8d1cda
49b322e
 
c686a8d
 
 
 
 
 
49b322e
c686a8d
 
 
 
081465c
 
c686a8d
 
49b322e
 
 
 
 
 
 
 
 
 
 
 
 
 
c686a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081465c
 
c686a8d
ba5770d
49b322e
 
 
 
 
 
 
 
d8d1cda
 
49b322e
 
ba5770d
c686a8d
 
f1ca883
ba5770d
49b322e
d8d1cda
49b322e
 
 
6381c79
49b322e
 
 
 
 
 
 
 
f1ca883
49b322e
 
 
 
f1ca883
 
 
 
 
 
49b322e
 
081465c
 
 
 
 
 
 
d8d1cda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import sys
import torch
import gradio as gr
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
import subprocess
from tqdm import tqdm
import requests
import einops
import math
import random
import pytorch_lightning as pl
import spaces

def download_file(url, filename):
    response = requests.get(url, stream=True)
    total_size = int(response.headers.get('content-length', 0))
    block_size = 1024
    with open(filename, 'wb') as file, tqdm(
        desc=filename,
        total=total_size,
        unit='iB',
        unit_scale=True,
        unit_divisor=1024,
    ) as progress_bar:
        for data in response.iter_content(block_size):
            size = file.write(data)
            progress_bar.update(size)

def setup_environment():
    if not os.path.exists("CCSR"):
        print("Cloning CCSR repository...")
        subprocess.run(["git", "clone", "-b", "dev", "https://github.com/camenduru/CCSR.git"])
    
    os.chdir("CCSR")
    sys.path.append(os.getcwd())
    
    os.makedirs("weights", exist_ok=True)
    if not os.path.exists("weights/real-world_ccsr.ckpt"):
        print("Downloading model checkpoint...")
        download_file(
            "https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt",
            "weights/real-world_ccsr.ckpt"
        )
    else:
        print("Model checkpoint already exists. Skipping download.")

setup_environment()

from ldm.xformers_state import disable_xformers
from model.q_sampler import SpacedSampler
from model.ccsr_stage1 import ControlLDM
from utils.common import instantiate_from_config, load_state_dict
from utils.image import auto_resize

config = OmegaConf.load("configs/model/ccsr_stage2.yaml")
model = instantiate_from_config(config)
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu")
load_state_dict(model, ckpt, strict=True)
model.freeze()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

@torch.no_grad()
@spaces.GPU
def process(
    control_img: Image.Image,
    num_samples: int,
    sr_scale: float,
    strength: float,
    positive_prompt: str,
    negative_prompt: str,
    cfg_scale: float,
    steps: int,
    use_color_fix: bool,
    seed: int,
    tile_diffusion: bool,
    tile_diffusion_size: int,
    tile_diffusion_stride: int
):
    print(f"control image shape={control_img.size}\n"
          f"num_samples={num_samples}, sr_scale={sr_scale}, strength={strength}\n"
          f"positive_prompt='{positive_prompt}', negative_prompt='{negative_prompt}'\n"
          f"cfg scale={cfg_scale}, steps={steps}, use_color_fix={use_color_fix}\n"
          f"seed={seed}\n"
          f"tile_diffusion={tile_diffusion}, tile_diffusion_size={tile_diffusion_size}, tile_diffusion_stride={tile_diffusion_stride}")
    
    pl.seed_everything(seed)

    # Resize input image
    if sr_scale != 1:
        control_img = control_img.resize(
            tuple(math.ceil(x * sr_scale) for x in control_img.size),
            Image.BICUBIC
        )
    
    input_size = control_img.size

    # Resize the image
    if not tile_diffusion:
        control_img = auto_resize(control_img, 512)
    else:
        control_img = auto_resize(control_img, tile_diffusion_size)

    # Resize image to be multiples of 64
    control_img = control_img.resize(
        tuple((s // 64 + 1) * 64 for s in control_img.size), Image.LANCZOS
    )
    control_img = np.array(control_img)

    # Convert to tensor (NCHW, [0,1])
    control = torch.tensor(control_img[None] / 255.0, dtype=torch.float32, device=device).clamp_(0, 1)
    control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
    height, width = control.size(-2), control.size(-1)
    model.control_scales = [strength] * 13

    # Move model and tensors to GPU if available
    if torch.cuda.is_available():
        model.to("cuda")
        control = control.to("cuda")

    sampler = SpacedSampler(model, var_type="fixed_small")
    preds = []
    for _ in tqdm(range(num_samples)):
        shape = (1, 4, height // 8, width // 8)
        x_T = torch.randn(shape, device=device, dtype=torch.float32)
        if torch.cuda.is_available():
            x_T = x_T.to("cuda")
        if not tile_diffusion:
            samples = sampler.sample_ccsr(
                steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control,
                positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
                cfg_scale=cfg_scale,
                color_fix_type="adain" if use_color_fix else "none"
            )
        else:
            samples = sampler.sample_with_tile_ccsr(
                tile_size=tile_diffusion_size, tile_stride=tile_diffusion_stride,
                steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control,
                positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
                cfg_scale=cfg_scale,
                color_fix_type="adain" if use_color_fix else "none"
            )

        x_samples = samples.clamp(0, 1)
        x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)

        img = Image.fromarray(x_samples[0, ...]).resize(input_size, Image.LANCZOS)
        preds.append(np.array(img))

    return preds

def update_output_resolution(image, scale_choice, custom_scale):
    if image is not None:
        width, height = image.size
        if scale_choice == "Custom":
            scale = custom_scale
        elif "%" in scale_choice:
            scale = float(scale_choice.split()[-1].strip("()%")) / 100
        else:
            scale = float(scale_choice.split()[-1].strip("()x"))
        return f"Current resolution: {width}x{height}. Output resolution: {int(width*scale)}x{int(height*scale)}"
    return "Upload an image to see the output resolution"

def update_scale_choices(image):
    if image is not None:
        width, height = image.size
        aspect_ratio = width / height
        common_resolutions = [
            (1280, 720), (1920, 1080), (2560, 1440), (3840, 2160),  # 16:9
            (1440, 1440), (2048, 2048), (2560, 2560), (3840, 3840)  # 1:1
        ]
        choices = []
        for w, h in common_resolutions:
            if abs(w/h - aspect_ratio) < 0.1:  # Allow some tolerance for aspect ratio
                scale = max(w/width, h/height)
                if scale > 1:
                    choices.append(f"{w}x{h} ({scale:.2f}x)")
        
        if not choices:  # If no common resolutions fit, use percentage-based options
            choices = [
                f"{width*2}x{height*2} (200%)",
                f"{width*4}x{height*4} (400%)",
                f"{width*8}x{height*8} (800%)"
            ]
        
        choices.append("Custom")
        return gr.update(choices=choices, value=choices[0])
    return gr.update(choices=["Custom"], value="Custom")

# Improved UI design
css = """
.container {max-width: 1200px; margin: auto; padding: 20px;}
.input-image {width: 100%; max-height: 500px; object-fit: contain;}
.output-gallery {display: flex; flex-wrap: wrap; justify-content: center;}
.output-image {margin: 10px; max-width: 45%; height: auto;}
.gr-form {border: 1px solid #e0e0e0; border-radius: 8px; padding: 16px; margin-bottom: 16px;}
"""

with gr.Blocks(css=css) as block:
    gr.HTML("<h1 style='text-align: center;'>CCSR Upscaler</h1>")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="Input Image", elem_classes="input-image")
            sr_scale = gr.Dropdown(
                label="Output Resolution",
                choices=["Custom"],
                value="Custom",
                interactive=True
            )
            custom_scale = gr.Slider(
                label="Custom Scale",
                minimum=1,
                maximum=8,
                value=4,
                step=0.1,
                visible=True
            )
            output_resolution = gr.Markdown("Upload an image to see the output resolution")
            run_button = gr.Button(value="Run", variant="primary")
        
        with gr.Column(scale=1):
            with gr.Accordion("Advanced Options", open=False):
                num_samples = gr.Slider(label="Number Of Samples", minimum=1, maximum=12, value=1, step=1)
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                positive_prompt = gr.Textbox(label="Positive Prompt", value="")
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
                )
                cfg_scale = gr.Slider(label="Classifier Free Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=45, step=1)
                use_color_fix = gr.Checkbox(label="Use Color Correction", value=True)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
                tile_diffusion = gr.Checkbox(label="Tile diffusion", value=False)
                tile_diffusion_size = gr.Slider(label="Tile diffusion size", minimum=512, maximum=1024, value=512, step=256)
                tile_diffusion_stride = gr.Slider(label="Tile diffusion stride", minimum=256, maximum=512, value=256, step=128)
    
    with gr.Row():
        result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery", elem_classes="output-gallery")

    def update_custom_scale(choice):
        return gr.update(visible=choice == "Custom")

    sr_scale.change(update_custom_scale, inputs=[sr_scale], outputs=[custom_scale])

    def get_scale_value(choice, custom):
        if choice == "Custom":
            return custom
        if "%" in choice:
            return float(choice.split()[-1].strip("()%")) / 100
        return float(choice.split()[-1].strip("()x"))

    inputs = [
        input_image, num_samples, sr_scale, strength, positive_prompt, negative_prompt,
        cfg_scale, steps, use_color_fix, seed, tile_diffusion, tile_diffusion_size,
        tile_diffusion_stride
    ]
    run_button.click(
        fn=lambda *args: process(args[0], args[1], get_scale_value(args[2], args[-1]), *args[3:-1]),
        inputs=inputs + [custom_scale],
        outputs=[result_gallery]
    )

    input_image.change(
        update_scale_choices,
        inputs=[input_image],
        outputs=[sr_scale]
    )

    input_image.change(
        update_output_resolution,
        inputs=[input_image, sr_scale, custom_scale],
        outputs=[output_resolution]
    )
    sr_scale.change(
        update_output_resolution,
        inputs=[input_image, sr_scale, custom_scale],
        outputs=[output_resolution]
    )
    custom_scale.change(
        update_output_resolution,
        inputs=[input_image, sr_scale, custom_scale],
        outputs=[output_resolution]
    )

    input_image.change(
        lambda x: gr.update(interactive=x is not None),
        inputs=[input_image],
        outputs=[sr_scale]
    )

block.launch(share=True)