File size: 4,645 Bytes
ee7f7d6
d948530
271a7bc
 
 
 
 
 
 
 
c2eddce
07d05ef
c2eddce
 
b4d6bb3
 
 
 
c2eddce
b4d6bb3
 
c2eddce
 
 
 
 
 
 
 
 
fcaff26
92f472f
c4bf23b
ee7f7d6
92f472f
c2eddce
4da45b0
c4bf23b
4da45b0
60efdc5
928b284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2eddce
ee7f7d6
 
 
 
928b284
 
 
 
 
ee7f7d6
d948530
ee7f7d6
 
5a4524e
ee7f7d6
 
 
5a4524e
ee7f7d6
 
2391de5
d43a916
c6d399b
2391de5
 
 
d43a916
 
2391de5
 
d43a916
996dc92
2391de5
 
9e744a1
d43a916
9e744a1
 
 
cd18648
ee7f7d6
56a8f0f
57ee7c0
3c053c9
56a8f0f
90f8da1
56a8f0f
 
 
 
 
b4d8694
56a8f0f
 
90f8da1
3c053c9
56a8f0f
57ee7c0
56a8f0f
d73a5f6
d43a916
 
 
cd18648
d43a916
 
 
5de4fd1
4ada7ec
c2eddce
ee7f7d6
d63ccb2
 
509b60d
bd6fe6e
996dc92
ee7f7d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr

TESTdevice = "cpu"
index = 1

def mainTest(inputpath, outpath):
    watermark = deep_nude_process(inputpath)
    watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
    return watermark1

def deep_nude_process(inputpath):
    dress = cv2.imread(inputpath)
    h = dress.shape[0]
    w = dress.shape[1]
    dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
    watermark = process(dress)
    watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
    return watermark

def inference(img):
    global index
    bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
    inputpath = f"input_{index}.jpg"
    cv2.imwrite(inputpath, bgra)

    outputpath = f"out_{index}.jpg"
    index += 1
    print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
    output = mainTest(inputpath, outputpath)
    print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
    return output
from PIL import Image

def load_image_from_file(file_path, new_height=None):
    """
    Load an image from a file and optionally resize it while maintaining the aspect ratio.

    Args:
        file_path (str): The path to the image file.
        new_height (int, optional): The new height for the image. If None, the image is not resized.

    Returns:
        Image: The loaded (and optionally resized) image.
    """
    try:
        img = Image.open(file_path)
        
        if new_height is not None:
            # Calculate new width to maintain aspect ratio
            aspect_ratio = img.width / img.height
            new_width = int(new_height * aspect_ratio)
            
            # Resize the image
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img
    except FileNotFoundError:
        print(f"File not found: {file_path}")
        return None
    except Image.UnidentifiedImageError:
        print(f"Cannot identify image file: {file_path}")
        return None
    except Exception as e:
        print(f"Error loading image from file: {e}")
        return None

title = "Undress AI"
description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"

examples = [
    [load_image_from_file('example1.png')],
    [load_image_from_file('example2.png')],
    [load_image_from_file('example3.png')],
    [load_image_from_file('example5.webp')],
    [load_image_from_file('example6.webp')],
]

css = """
body {
    background-color: rgb(3, 7, 18);
    color: white;
}
.gradio-container {
    background-color: rgb(3, 7, 18) !important;
    border: none !important;
}
#example_img .hide-container{
  height:100%; 
  width:50px;
  transition: transform 0.5s ease;
}
#example_img{
  width:50px;
  height:100%;
}
#example_img img{
  height:50px;
  width:50px;
  transition: transform 0.5s ease;
}
#example_img .container{
  height:50px;
  width:50px;
  transition: transform 0.5s ease;
}
footer {display: none !important;}
"""
js='''
<script>
window.postMessageToParent = function(img, event, source, value) {
    // Construct the message object with the provided parameters
    console.log("post start",event, source, value);
    const message = {
        event: event,
        source: source,
        value: value
    };
    
    // Post the message to the parent window
    window.parent.postMessage(message, '*');
    console.log("post finish");
    return img;
}
</script>
'''
with gr.Blocks(css=css, head=js) as demo:
    width=240
    height=340

    with gr.Row():
      with gr.Column(min_width=240,scale=3):  # Adjust scale for proper sizing
          image_input = gr.Image(type="numpy", label="Upload Image", height=height)
      with gr.Column(scale=1,min_width=50):
        gr.Examples(examples=examples, inputs=image_input, examples_per_page=10, elem_id="example_img")
    process_button = gr.Button("Nude!",size="sm")

    def update_status(img):
        processed_img = inference(img)
        return processed_img

    process_button.click(update_status, inputs=image_input, outputs=image_input, js='''(i) => window.postMessageToParent(i, "process_started", "demo_hf_deepnude_gan_card", "click_nude")''')
demo.queue(max_size=10)
demo.launch()