Spaces:
Running
Running
File size: 4,645 Bytes
ee7f7d6 d948530 271a7bc c2eddce 07d05ef c2eddce b4d6bb3 c2eddce b4d6bb3 c2eddce fcaff26 92f472f c4bf23b ee7f7d6 92f472f c2eddce 4da45b0 c4bf23b 4da45b0 60efdc5 928b284 c2eddce ee7f7d6 928b284 ee7f7d6 d948530 ee7f7d6 5a4524e ee7f7d6 5a4524e ee7f7d6 2391de5 d43a916 c6d399b 2391de5 d43a916 2391de5 d43a916 996dc92 2391de5 9e744a1 d43a916 9e744a1 cd18648 ee7f7d6 56a8f0f 57ee7c0 3c053c9 56a8f0f 90f8da1 56a8f0f b4d8694 56a8f0f 90f8da1 3c053c9 56a8f0f 57ee7c0 56a8f0f d73a5f6 d43a916 cd18648 d43a916 5de4fd1 4ada7ec c2eddce ee7f7d6 d63ccb2 509b60d bd6fe6e 996dc92 ee7f7d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr
TESTdevice = "cpu"
index = 1
def mainTest(inputpath, outpath):
watermark = deep_nude_process(inputpath)
watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
return watermark1
def deep_nude_process(inputpath):
dress = cv2.imread(inputpath)
h = dress.shape[0]
w = dress.shape[1]
dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
watermark = process(dress)
watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
return watermark
def inference(img):
global index
bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
inputpath = f"input_{index}.jpg"
cv2.imwrite(inputpath, bgra)
outputpath = f"out_{index}.jpg"
index += 1
print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
output = mainTest(inputpath, outputpath)
print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
return output
from PIL import Image
def load_image_from_file(file_path, new_height=None):
"""
Load an image from a file and optionally resize it while maintaining the aspect ratio.
Args:
file_path (str): The path to the image file.
new_height (int, optional): The new height for the image. If None, the image is not resized.
Returns:
Image: The loaded (and optionally resized) image.
"""
try:
img = Image.open(file_path)
if new_height is not None:
# Calculate new width to maintain aspect ratio
aspect_ratio = img.width / img.height
new_width = int(new_height * aspect_ratio)
# Resize the image
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
except FileNotFoundError:
print(f"File not found: {file_path}")
return None
except Image.UnidentifiedImageError:
print(f"Cannot identify image file: {file_path}")
return None
except Exception as e:
print(f"Error loading image from file: {e}")
return None
title = "Undress AI"
description = "β Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. π Do not upload personal photos π There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β"
examples = [
[load_image_from_file('example1.png')],
[load_image_from_file('example2.png')],
[load_image_from_file('example3.png')],
[load_image_from_file('example5.webp')],
[load_image_from_file('example6.webp')],
]
css = """
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
#example_img .hide-container{
height:100%;
width:50px;
transition: transform 0.5s ease;
}
#example_img{
width:50px;
height:100%;
}
#example_img img{
height:50px;
width:50px;
transition: transform 0.5s ease;
}
#example_img .container{
height:50px;
width:50px;
transition: transform 0.5s ease;
}
footer {display: none !important;}
"""
js='''
<script>
window.postMessageToParent = function(img, event, source, value) {
// Construct the message object with the provided parameters
console.log("post start",event, source, value);
const message = {
event: event,
source: source,
value: value
};
// Post the message to the parent window
window.parent.postMessage(message, '*');
console.log("post finish");
return img;
}
</script>
'''
with gr.Blocks(css=css, head=js) as demo:
width=240
height=340
with gr.Row():
with gr.Column(min_width=240,scale=3): # Adjust scale for proper sizing
image_input = gr.Image(type="numpy", label="Upload Image", height=height)
with gr.Column(scale=1,min_width=50):
gr.Examples(examples=examples, inputs=image_input, examples_per_page=10, elem_id="example_img")
process_button = gr.Button("Nude!",size="sm")
def update_status(img):
processed_img = inference(img)
return processed_img
process_button.click(update_status, inputs=image_input, outputs=image_input, js='''(i) => window.postMessageToParent(i, "process_started", "demo_hf_deepnude_gan_card", "click_nude")''')
demo.queue(max_size=10)
demo.launch()
|