File size: 6,771 Bytes
9be4956 943733f 9be4956 3a3b852 9be4956 5b8f2ac e40c1b0 9be4956 e40c1b0 9be4956 b8f7423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "./leaderboard/evaluation")))
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "./leaderboard")))
os.chdir(os.path.dirname(os.path.abspath(__file__)))
os.environ['CURL_CA_BUNDLE'] = ''
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
# from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
from eval import eval_score
TOKEN = os.environ.get("TOKEN", None)
OWNER="osunlp"
DATA_DATASET = f"{OWNER}/TravelBench"
EVAL_DATASET = f"{OWNER}/TravelBenchEval"
api = HfApi()
YEAR_VERSION = "2024"
os.makedirs("scored", exist_ok=True)
# # Display the results
query_data_list = load_dataset('osunlp/TravelBenchEval','validation',token=TOKEN)['validation']
eval_results = load_dataset(EVAL_DATASET, 'scores', token=TOKEN)
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
local_df = local_df.remove_columns(["Mail"])
df = pd.DataFrame(local_df)
df = df.sort_values(by=["Final Pass Rate"], ascending=False)
numeric_cols = [c for c in local_df.column_names if "Rate" in c]
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
return df
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
# def restart_space():
# api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
def load_line_json_data(filename):
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f.read().strip().split('\n'):
unit = json.loads(line)
data.append(unit)
return data
def add_new_eval(
val_or_test: str,
eval_mode: str,
model: str,
planning_strategy: str,
organization: str,
mail: str,
path_to_file: str,
):
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
if path_to_file is None:
return format_warning("Please attach a file.")
# Save submitted file
api.upload_file(
repo_id=EVAL_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organization}/{val_or_test}_{eval_mode}_{planning_strategy}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# Compute score
file_path = path_to_file.name
result = eval_score(val_or_test,file_path=file_path,TOKEN=TOKEN)
with open(f"scored/{organization}_{val_or_test}_{eval_mode}_{planning_strategy}.jsonl", "w") as scored_file:
scored_file.write(json.dumps(result) + "\n")
# Save scored file
api.upload_file(
repo_id=EVAL_DATASET,
path_or_fileobj=f"scored/{organization}_{val_or_test}_{eval_mode}_{planning_strategy}.jsonl",
path_in_repo=f"{organization}/{model}/{val_or_test}_{eval_mode}_{planning_strategy}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# Actual submission
eval_entry = {
"Model": model,
"Planning Strategy": planning_strategy,
"Organization": organization,
"Mail": mail,
"Delivery Rate": result['Delivery Rate'],
"Commonsense Constraint Micro Pass Rate":result['Commonsense Constraint Micro Pass Rate'],
"Commonsense Constraint Macro Pass Rate":result['Commonsense Constraint Macro Pass Rate'],
"Hard Constraint Micro Pass Rate":result['Hard Constraint Micro Pass Rate'],
"Hard Constraint Macro Pass Rate":result['Hard Constraint Macro Pass Rate'],
"Final Pass Rate":result['Final Pass Rate']
}
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
print(eval_results)
eval_results.push_to_hub(EVAL_DATASET, config_name = 'scores', token=TOKEN)
return format_log(f"Model {model} submitted by {organization} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed")
def refresh():
eval_results = load_dataset(EVAL_DATASET, 'scores', token=TOKEN)
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
return eval_dataframe_val, eval_dataframe_test
# def upload_file(files):
# file_paths = [file.name for file in files]
# return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tab("Results: Validation"):
leaderboard_table_val = gr.components.Dataframe(
value=eval_dataframe_val, interactive=False,
)
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, interactive=False,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new file for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
eval_mode = gr.Radio(["two-stage", "sole-planning"], value="two-stage", label="Eval Mode")
model = gr.Textbox(label="Foundation Model")
planning_strategy = gr.Textbox(label="Planning Strategy")
with gr.Column():
organization = gr.Textbox(label="Organization")
mail = gr.Textbox(label="Contact email")
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
eval_mode,
model,
planning_strategy,
organization,
mail,
file_output,
],
submission_result,
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=3600)
# scheduler.start()
demo.launch(debug=True)
|