File size: 33,504 Bytes
3a3b852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
from annotation.src.utils import get_valid_name_city,extract_before_parenthesis,extract_numbers_from_filenames
from tools.flights.apis import Flights
from tools.accommodations.apis import Accommodations
from tools.restaurants.apis import Restaurants
from tools.googleDistanceMatrix.apis import GoogleDistanceMatrix
from tools.attractions.apis import Attractions
import math
import json
import re
import os
import sys
from tqdm import tqdm
import argparse
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "..")))
os.chdir(os.path.dirname(os.path.abspath(__file__)))
flight = Flights()
accommodation = Accommodations()
restaurants = Restaurants()
googleDistanceMatrix = GoogleDistanceMatrix()
attractions = Attractions()
city_state_set = open('../database/background/citySet_with_states.txt','r').read().split('\n')
city_state_map = {x:y for x,y in [unit.split('\t') for unit in city_state_set]}
def load_line_json_data(filename):
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f.read().strip().split('\n'):
unit = json.loads(line)
data.append(unit)
return data
def count_consecutive_values(lst):
if not lst:
return []
result = []
current_string = lst[0]
count = 1
for i in range(1, len(lst)):
if lst[i] == current_string:
count += 1
else:
result.append((current_string, count))
current_string = lst[i]
count = 1
result.append((current_string, count)) # Add the last group of values
return result
def transportation_match(text: str):
if 'taxi' in text.lower():
return 'Taxi'
elif 'self-driving' in text.lower():
return 'Self-driving'
elif 'flight' in text.lower():
return 'Flight'
def extract_from_to(text: str):
"""
Extracts 'A' and 'B' from the format "from A to B" in the given text, with B ending at a comma or the end of the string.
Args:
- text (str): The input string.
Returns:
- tuple: A tuple containing 'A' and 'B'. If no match is found, returns (None, None).
"""
pattern = r"from\s+(.+?)\s+to\s+([^,]+)(?=[,\s]|$)"
matches = re.search(pattern, text)
return matches.groups() if matches else (None, None)
def is_valid_city_sequence(city_list):
"""
Checks if the city sequence is valid. A valid sequence has every city (except the first and last)
appearing consecutively, and no city should appear again once its sequence is over.
Args:
- city_list (list): List of cities.
Returns:
- bool: True if the sequence is valid, False otherwise.
"""
# If the list has less than 3 cities, it's invalid.
if len(city_list) < 3:
return False
# Set to keep track of visited cities
visited_cities = set()
i = 0
while i < len(city_list):
city = city_list[i]
# If the city was already visited, it's invalid.
if city in visited_cities and (i != 0 and i != len(city_list) - 1):
return False
# Count the consecutive occurrences of the city
count = 0
while i < len(city_list) and city_list[i] == city:
count += 1
i += 1
# If the city appeared only once in the medium, it's invalid.
if count == 1 and 0 < i - 1 < len(city_list) - 1:
return False
visited_cities.add(city)
return True
def is_reasonalbe_visiting_city(question, tested_data):
city_list = []
# print(tested_data)
for i in range(min(question['days'],len(tested_data))):
city_value = tested_data[i]['current_city']
if 'from' in city_value:
city1, city2 = extract_from_to(city_value)
city1 = extract_before_parenthesis(city1)
city2 = extract_before_parenthesis(city2)
if i==0 and city1 != question['org']:
return False, f"The first day's city should be {question['org']}."
city_list += [city1, city2]
else:
city_list.append(extract_before_parenthesis(city_value))
if city_list[0] != city_list[-1]:
return False, "The trip should be a closed circle."
if not is_valid_city_sequence(city_list):
return False, "The city sequence is invalid."
for idx, city in enumerate(city_list):
if city not in city_state_map:
return False, f"{city} is not a valid city."
if idx not in [0,len(city_list)-1] and question['days'] >3 and city_state_map[city] != question['dest']:
return False, f"{city} is not in {question['dest']}."
return True, None
def is_valid_restaurants(question, tested_data):
restaurants_list = []
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if 'breakfast' in unit and unit['breakfast'] and unit['breakfast'] != '-':
if unit['breakfast'] not in restaurants_list:
restaurants_list.append(unit['breakfast'])
else:
return False, f"The restaurant in day {i+1} breakfast is repeated."
# elif 'breakfast' not in unit :
# return False, f"No Breakfast Info."
if 'lunch' in unit and unit['lunch'] and unit['lunch'] != '-':
if unit['lunch'] not in restaurants_list:
restaurants_list.append(unit['lunch'])
else:
return False, f"The restaurant in day {i+1} lunch {unit['lunch']} is repeated."
# elif 'lunch' not in unit:
# return False, f"No Lunch Info."
if 'dinner' in unit and unit['dinner'] and unit['dinner'] != '-':
if unit['dinner'] not in restaurants_list:
restaurants_list.append(unit['dinner'])
else:
return False, f"The restaurant in day {i+1} dinner is repeated."
# elif 'dinner' not in unit:
# return False, f"No Dinner Info."
return True, None
def is_valid_attractions(question, tested_data):
attractions_list = []
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if 'attraction' in unit and unit['attraction'] and unit['attraction'] != '-':
for attraction in unit['attraction'].split(';')[:-1]:
if attraction not in attractions_list:
attractions_list.append(attraction)
else:
return False, f"The attraction '{attraction}' in day {i+1} is repeated."
# elif 'attraction' not in unit:
# return False, f"No Attraction Info."
return True, None
def is_valid_transportation(question, tested_data):
if tested_data[0]['transportation'] and tested_data[0]['transportation'] != '-':
transportation_list = [transportation_match(tested_data[0]['transportation'])]
else:
return False, "The transportation in day 1 should not be empty."
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if 'transportation' in unit and unit['transportation'] and unit['transportation'] != '-':
transportation_list.append(transportation_match(unit['transportation']))
# elif 'transportation' not in unit:
# return False, f"No Transportation Info."
if (('Self-driving' in transportation_list) and ('Flight' in transportation_list)) or (('Taxi' in transportation_list) and ('Self-driving' in transportation_list)):
return False, "The transportation is conflicting."
return True, None
def is_valid_information_in_current_city(question, tested_data):
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
current_city = unit['current_city']
final_city_list = []
if 'from' in current_city:
city1, city2 = extract_from_to(current_city)
city1 = extract_before_parenthesis(city1)
city2 = extract_before_parenthesis(city2)
final_city_list = [city1, city2]
else:
final_city_list = extract_before_parenthesis(current_city)
if 'transportation' in unit and unit['transportation'] and unit['transportation'] != '-':
for city in final_city_list:
if city not in unit['transportation']:
# print(city)
return False, f"The transportation in day {i+1} is invalid city choice."
# elif 'transportation' not in unit:
# return False, f"No Transportation Info."
if 'breakfast' in unit and unit['breakfast'] and unit['breakfast'] != '-':
flag = False
for city in final_city_list:
if city in unit['breakfast']:
flag = True
if not flag:
return False, f"The breakfast in day {i+1} is invalid city choice."
# elif 'breakfast' not in unit:
# return False, f"No Breakfast Info."
if 'lunch' in unit and unit['lunch'] and unit['lunch'] != '-':
flag = False
for city in final_city_list:
if city in unit['lunch']:
flag = True
if not flag:
return False, f"The lunch in day {i+1} is invalid city choice."
# elif 'lunch' not in unit:
# return False, f"No Lunch Info."
if 'dinner' in unit and unit['dinner'] and unit['dinner'] != '-':
flag = False
for city in final_city_list:
if city in unit['dinner']:
flag = True
if not flag:
return False, f"The dinner in day {i+1} is invalid city choice."
# elif 'dinner' not in unit:
# return False, f"No Dinner Info."
if 'attraction' in unit and unit['attraction'] and unit['attraction'] != '-':
attraction_list = unit['attraction'].split(';')[:-1]
for attraction in attraction_list:
flag = False
for city in final_city_list:
if city in attraction:
flag = True
if not flag:
return False, f"The attraction in day {i+1} is invalid city choice."
# elif 'attraction' not in unit:
# return False, f"No Attraction Info."
if 'accommodation' in unit and unit['accommodation'] and unit['accommodation'] != '-':
if final_city_list[-1] not in unit['accommodation']:
return False, f"The accommodation in day {i+1} is invalid city choice."
# elif 'accommodation' not in unit:
# return False, f"No Accommodation Info."
return True, None
# hallucination
def is_valid_information_in_sandbox(question, tested_data):
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if unit['transportation'] and unit['transportation'] != '-':
value = unit['transportation']
org_city, dest_city = extract_from_to(value)
if org_city == None or dest_city == None:
org_city, dest_city = extract_from_to(unit['current_city'])
if 'flight number' in value.lower():
try:
org_city = extract_before_parenthesis(org_city)
dest_city = extract_before_parenthesis(dest_city)
except TypeError:
raise ValueError("The transportation {} in day {} can not be parsed.".format(value,i+1))
# print(value)
if len(flight.data[(flight.data['Flight Number'] == value.split('Flight Number: ')[1].split(',')[0]) & (flight.data['OriginCityName']==org_city) & (flight.data['DestCityName']==dest_city)]) < 1:
return False, f"The flight number in day {i+1} is invalid in the sandbox."
elif 'self-driving' in value.lower() or 'taxi' in value.lower():
try:
org_city = extract_before_parenthesis(org_city)
dest_city = extract_before_parenthesis(dest_city)
except TypeError:
org_city = '-'
dest_city = '-'
print("The transportation {} in day {} can not be parsed and '-' will be used instead.".format(value,i+1))
if 'self-driving' in value.lower():
if googleDistanceMatrix.run_for_evaluation(org_city, dest_city, mode='self-driving')['cost'] == None:
return False, f"The self-driving in day {i+1} is invalid in the sandbox."
else:
if googleDistanceMatrix.run_for_evaluation(org_city, dest_city, mode='taxi')['cost'] == None:
return False, f"The taxi in day {i+1} is invalid in the sandbox."
if 'breakfast' in unit and unit['breakfast'] and unit['breakfast'] != '-':
name, city = get_valid_name_city(unit['breakfast'])
if len(restaurants.data[(restaurants.data['Name'].astype(str).str.contains(re.escape(name))) & (restaurants.data['City'] == city)]) < 1:
return False, f"The breakfast in day {i+1} is invalid in the sandbox."
# elif 'breakfast' not in unit:
# return False, f"No Breakfast Info."
if 'lunch' in unit and unit['lunch'] and unit['lunch'] != '-':
name, city = get_valid_name_city(unit['lunch'])
if len(restaurants.data[(restaurants.data['Name'].astype(str).str.contains(re.escape(name))) & (restaurants.data['City'] == city)]) < 1:
return False, f"The lunch in day {i+1} is invalid in the sandbox."
# elif 'lunch' not in unit:
# return False, f"No Lunch Info."
if 'dinner' in unit and unit['dinner'] and unit['dinner'] != '-':
name, city = get_valid_name_city(unit['dinner'])
if len(restaurants.data[(restaurants.data['Name'].astype(str).str.contains(re.escape(name))) & (restaurants.data['City'] == city)]) < 1:
return False, f"The dinner in day {i+1} is invalid in the sandbox."
# elif 'dinner' not in unit:
# return False, f"No Dinner Info."
if 'attraction' in unit and unit['attraction'] and unit['attraction'] != '-':
attractions_list = unit['attraction'].split(';')[:-1]
for attraction in attractions_list:
name, city = get_valid_name_city(attraction)
if len(attractions.data[(attractions.data['Name'].astype(str).str.contains(re.escape(name))) & (attractions.data['City'] == city)]) < 1:
return False, f"The attraction {attraction} in day {i+1} is invalid in the sandbox."
# elif 'attraction' not in unit:
# return False, f"No Attraction Info."
if 'accommodation' in unit and unit['accommodation'] and unit['accommodation'] != '-':
name, city = get_valid_name_city(unit['accommodation'])
# print(name,city)
# print(accommodation.data[accommodation.data['NAME'].astype(str).str.contains(re.escape(name))])
if len(accommodation.data[(accommodation.data['NAME'].astype(str).str.contains(re.escape(name))) & (accommodation.data['city'] == city)]) < 1:
return False, f"The accommodation in day {i+1} is invalid in the sandbox."
# elif 'accommodation' not in unit:
# return False, f"No Accommodation Info."
return True, None
def is_valid_accommodaton(question, tested_data):
data = []
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if 'accommodation' not in unit:
return False, f"No Accommodation Info."
data.append(unit['accommodation'])
# data = [unit['accommodation'] for unit in tested_data]
consectutive_accommodation = count_consecutive_values(data)
for unit in consectutive_accommodation:
# print(unit)
if unit and unit[0] not in ['-',''] :
name, city = get_valid_name_city(unit[0])
# print(unit[0],name,city)
# try:
if len(accommodation.data[(accommodation.data['NAME'].astype(str).str.contains(re.escape(name))) & (accommodation.data['city'] == city)]) == 1 and unit[1] < accommodation.data[(accommodation.data['NAME'].astype(str).str.contains(re.escape(name))) & (accommodation.data['city'] == city)].iloc[0]['minimum nights']:
return False, f"The accommodation {unit[0]} do not obey the minumum nights rule."
# can not parse data
# except re.error:
# continue
return True, None
def is_valid_visiting_city_number(question, tested_data):
city_set = set()
for i in range(min(question['days'],len(tested_data))):
city_value = tested_data[i]['current_city']
if 'from' in city_value:
city1, city2 = extract_from_to(city_value)
city1 = extract_before_parenthesis(city1)
city2 = extract_before_parenthesis(city2)
if i==0 and city1 != question['org']:
return False, f"The first day's city should be {question['org']}."
city_set.add(city1)
city_set.add(city2)
else:
city_set.add(extract_before_parenthesis(city_value))
city_set.discard(question['org'])
if len(city_set) != question['visiting_city_number']:
return False, f"The number of visiting cities should be {question['visiting_city_number']}."
return True, None
def is_valid_days(question, tested_data):
lens = 0
for i in range(min(question['days'],len(tested_data))):
if tested_data[i] != {} and tested_data[i]['current_city'] != "You don't need to fill in the information for this or later days.":
lens += 1
if lens != question['days']:
# print(lens)
return False, f"The number of days should be {question['days']}."
else:
return True, None
def is_not_absent(question, tested_data):
needed_info = 6 * question['days']
total_valid_info = 0
if not is_valid_days(question, tested_data)[0]:
return False, "Invalid Days"
if not is_valid_visiting_city_number(question, tested_data)[0]:
return False, "Invalid City Number"
for i in range(min(question['days'],len(tested_data))):
unit = tested_data[i]
if 'transportation' not in unit:
return False, f"No Transportation Info."
if 'breakfast' not in unit:
return False, f"No Breakfast Info."
if 'lunch' not in unit:
return False, f"No Lunch Info."
if 'dinner' not in unit:
return False, f"No Dinner Info."
if 'attraction' not in unit:
return False, f"No Attraction Info."
if 'accommodation' not in unit:
return False, f"No Accommodation Info."
if ('from ' in unit['current_city'] or 'to ' in unit['current_city']) and unit['transportation'] in ['','-']:
return False, f"No transportation in day {i+1} is not allowed."
if ('from ' not in unit['current_city'] and ' to ' not in unit['current_city']) and unit['attraction'] in ['','-']:
return False, f"No attaction in day {i+1} is not allowed."
if i != question['days'] - 1 and unit['accommodation'] in ['','-']:
return False, f"No accommodation in day {i+1} is not allowed."
if (unit['breakfast'] in ['','-'] or unit['lunch'] in ['','-'] or unit['dinner'] in ['','-']) and 'from ' not in unit['current_city']:
return False, f"No meal in day {i+1} is not allowed."
for key in unit:
if unit[key] and unit[key] != '-':
total_valid_info += 1
if total_valid_info * 1.0 / needed_info < 0.5:
return False, f"The absent information is more than 50%."
return True, None
def evaluation(query_data, tested_data):
return_info = {}
return_info['is_reasonalbe_visiting_city'] = is_reasonalbe_visiting_city(query_data, tested_data)
return_info['is_valid_restaurants'] = is_valid_restaurants(query_data, tested_data)
return_info['is_valid_attractions'] = is_valid_attractions(query_data, tested_data)
return_info['is_valid_accommodation'] = is_valid_accommodaton(query_data, tested_data)
return_info['is_valid_transportation'] = is_valid_transportation(query_data, tested_data)
return_info['is_valid_information_in_current_city'] = is_valid_information_in_current_city(query_data, tested_data)
return_info['is_valid_information_in_sandbox'] = is_valid_information_in_sandbox(query_data, tested_data)
return_info['is_not_absent'] = is_not_absent(query_data, tested_data)
return return_info
def boolean_evaluation(query_data, tested_data):
return_info = {}
return_info['is_reasonalbe_visiting_city'] = is_reasonalbe_visiting_city(query_data, tested_data)
return_info['is_valid_restaurants'] = is_valid_restaurants(query_data, tested_data)
return_info['is_valid_accommodation'] = is_valid_accommodaton(query_data, tested_data)
return_info['is_valid_attractions'] = is_valid_attractions(query_data, tested_data)
return_info['is_valid_transportation'] = is_valid_transportation(query_data, tested_data)
return_info['is_valid_information_in_current_city'] = is_valid_information_in_current_city(query_data, tested_data)
return_info['is_valid_information_in_sandbox'] = is_valid_information_in_sandbox(query_data, tested_data)
return_info['is_not_absent'] = is_not_absent(query_data, tested_data)
for key in return_info:
if return_info[key][0] == False:
print(return_info[key][1])
return False
return True
# if __name__ == '__main__':
# number_list = extract_numbers_from_filenames('/home/xj/toolAugEnv/code/toolConstraint/data/annotation/lrz')
# # json_data = json.load(open('/home/xj/toolAugEnv/code/toolConstraint/data/annotation/x/annotation_4.json'))
# query_data = load_line_json_data('/home/xj/toolAugEnv/code/toolConstraint/data/query/lrz.jsonl')
# for idx in number_list:
# json_data = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/lrz/annotation_{idx}.json'))
# print(str(idx), evaluation(query_data[idx-1], json_data))
# # json_data = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/turbo16k-turbo16k/plan_{idx}.json'))
# # query_data = load_line_json_data('/home/xj/toolAugEnv/code/toolConstraint/data/query/test.jsonl')[idx-1]
# # help me write all function name in this file, just the name
# #
# # list all function name in this file
# # ['is_reasonalbe_visiting_city', 'is_valiable_restaurants', 'is_valiable_attractions', 'is_valiable_transportation', 'is_valid_information_in_current_city', 'is_valid_information_in_sandbox']
# # print(is_valiable_restaurants(query_data, json_data))
# if __name__ == "__main__":
# user = 'zk'
# query_data_list = load_line_json_data(f'/home/xj/toolAugEnv/code/toolConstraint/data/query/{user}.jsonl')
# idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}')
# commonsense_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
# for idx in idx_number_list:
# print(idx)
# query_data = query_data_list[idx-1]
# generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/turbo16k-turbo16k/{user}/plan_{idx}.json'))
# # generated_plan = generated_plan[:-1]
# if generated_plan[-1]['gpt-3.5-turbo-16k-result'] != 'Plan Fail':
# info_box = evaluation(query_data, generated_plan[-1]['gpt-3.5-turbo-16k-result'])
# generated_plan[-1]['toolAug-commonsense'] = info_box
# else:
# generated_plan[-1]['toolAug-commonsense'] = None
# info_box = None
# commonsense_statistic[query_data['level']][query_data['days']].append(info_box)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/turbo16k-turbo16k/{user}/plan_{idx}.json','w') as f:
# json.dump(generated_plan,f)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/turbo16k-turbo16k/{user}/commonsense_statistic.json','w') as f:
# json.dump(commonsense_statistic,f)
# if __name__ == "__main__":
# user = 'all'
# model_type = ['chatgpt','gpt4','greedy_search'][2]
# query_data_list = load_line_json_data(f'/home/xj/toolAugEnv/code/toolConstraint/data/query/{user}.jsonl')
# # idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}')
# idx_number_list = [i for i in range(1,501)]
# commonsense_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
# for idx in idx_number_list:
# print(idx)
# query_data = query_data_list[idx-1]
# generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/pre2/{user}/plan_{idx}.json'))
# # generated_plan = generated_plan[:-1]
# if model_type == 'greedy_search':
# info_box = evaluation(query_data, generated_plan[-1][f'greedy_search_plan'])
# else:
# info_box = evaluation(query_data, generated_plan[-1][f'{model_type}_human_collected_info_results_parsed'])
# generated_plan[-1][f'{model_type}_with_human_collected_commonsense'] = info_box
# commonsense_statistic[query_data['level']][query_data['days']].append(info_box)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/pre2/{user}/plan_{idx}.json','w') as f:
# json.dump(generated_plan,f)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/pre2/{user}/{model_type}_with_human_collected_commonsense_statistic.json','w') as f:
# json.dump(commonsense_statistic,f)
# if __name__ == "__main__":
# user = 'all'
# query_data_list = load_line_json_data(f'/home/xj/toolAugEnv/code/toolConstraint/data/query/{user}.jsonl')
# idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}')
# hardConstraint_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
# not_satified = []
# for idx in tqdm(idx_number_list):
# # print(idx)
# query_data = query_data_list[idx-1]
# generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}/annotation_{idx}.json'))
# if not boolean_evaluation(query_data, generated_plan):
# not_satified.append(idx)
# print(idx)
# generated_plan = generated_plan[:-1]
# print(not_satified)
if __name__ == "__main__":
set_type = ["train",'dev','test'][0]
query_data_list = load_line_json_data(f'/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{set_type}/query/query.jsonl')
# idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{set_type}/plan')
commonsense_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
not_satified = []
# print( idx_number_list)
for idx in tqdm(range(1,len(query_data_list)+1)):
# print(idx)
query_data = query_data_list[idx-1]
generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{set_type}/plan/plan_{idx}.json'))
try:
store_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{set_type}/plan_{idx}.json'))
except FileNotFoundError:
store_plan = [{}]
info_box = evaluation(query_data,generated_plan[1])
# if not boolean_evaluation(query_data, generated_plan[1]):
# not_satified.append(idx)
# print(idx)
# print(store_plan[-1])
store_plan[-1][f'human_anno_commonsense_constraint'] = info_box
with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{set_type}/plan_{idx}.json','w') as f:
json.dump(store_plan,f)
commonsense_statistic[query_data['level']][query_data['days']].append(info_box)
print(not_satified)
with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{set_type}/human_anno_commonsense_constraint.json','w') as f:
json.dump(commonsense_statistic,f)
# if __name__ == "__main__":
# user = 'all'
# model_type = ['chatgpt','gpt4'][1]
# query_data_list = load_line_json_data(f'/home/xj/toolAugEnv/code/toolConstraint/data/query/{user}.jsonl')
# # idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}')
# idx_number_list = [i for i in range(1,501)]
# commonsense_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
# cnt = 0
# for idx in idx_number_list:
# # print(idx)
# query_data = query_data_list[idx-1]
# generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/pre/{user}/plan_{idx}.json'))[-1]['gpt4_human_collected_info_results_parsed']
# # generated_plan = generated_plan[:-1]
# if not boolean_evaluation(query_data, generated_plan):
# cnt += 1
# print(idx)
# print(cnt)
# if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="")
# # model_type = ['gpt-3.5-turbo-1106','gpt-4-1106-preview','greedy_search','mistral-7B-32K','gemini2','mixtral','gpt-3.5-turbo-11062'][-1]
# # method = ['direct','cot','react','reflexion','tool-use'][-1]
# # set_type = ['dev','test'][0]
# parser.add_argument("--model_type", type=str, default="gpt-3.5-turbo-1106")
# parser.add_argument("--method", type=str, default="direct")
# parser.add_argument("--set_type", type=str, default="dev")
# args = parser.parse_args()
# directory = f'/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{args.set_type}'
# query_data_list = load_line_json_data(os.path.join(directory, 'query/query.jsonl'))
# # idx_number_list = extract_numbers_from_filenames(f'/home/xj/toolAugEnv/code/toolConstraint/data/annotation/{user}')
# idx_number_list = [i for i in range(1,len(query_data_list)+1)]
# commonsense_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']}
# deliver_cnt = 0
# if args.method == 'tool-use':
# suffix = ''
# else:
# suffix = '_with_human_info'
# for idx in tqdm(idx_number_list):
# # print(idx)
# query_data = query_data_list[idx-1]
# generated_plan = json.load(open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{args.set_type}/plan_{idx}.json'))
# # generated_plan = generated_plan[:-1]
# if args.model_type == 'greedy_search':
# info_box = evaluation(query_data, generated_plan[-1][f'greedy_search_plan'])
# else:
# if args.method == 'tool-use':
# suffix2 = ''
# else:
# suffix2 = '_collected'
# if generated_plan[-1][f'{args.model_type}_{args.method}{suffix2}_info_results'] and generated_plan[-1][f'{args.model_type}_{args.method}{suffix2}_info_results']!='Max Token Length Exceeded.':
# try:
# info_box = evaluation(query_data, generated_plan[-1][f'{args.model_type}_{args.method}{suffix}_results_parsed'])
# except KeyError:
# info_box = None
# generated_plan[-1][f'{args.model_type}_{args.method}{suffix2}_info_results'] = ""
# except IndexError:
# info_box = None
# generated_plan[-1][f'{args.model_type}_{args.method}{suffix2}_info_results'] = ""
# else:
# info_box = None
# if info_box:
# deliver_cnt += 1
# generated_plan[-1][f'{args.model_type}_{args.method}{suffix}_commonsense_constraint'] = info_box
# commonsense_statistic[query_data['level']][query_data['days']].append(info_box)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{args.set_type}/plan_{idx}.json','w') as f:
# json.dump(generated_plan,f)
# with open(f'/home/xj/toolAugEnv/code/toolConstraint/results/{args.set_type}/{args.model_type}_{args.method}{suffix}_commonsense_constraint.json','w') as f:
# json.dump(commonsense_statistic,f)
# if args.set_type == 'dev':
# print(f"Model:{args.model_type} Method:{args.method} Set: {args.set_type} \nDeliver Rate: {deliver_cnt/180}" )
# elif args.set_type == 'test':
# print(f"Model:{args.model_type} Method:{args.method} Set: {args.set_type} \nDeliver Rate: {deliver_cnt/1000}" )
|