File size: 7,203 Bytes
2dba94f
 
 
dbd7a03
 
 
 
2dba94f
 
 
dbd7a03
2dba94f
 
 
dbd7a03
4dcba74
2dba94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dba94f
dbd7a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dba94f
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd7a03
e3a5d5a
dbd7a03
2dba94f
dbd7a03
 
 
 
e045c4a
2dba94f
dbd7a03
 
 
 
 
 
2dba94f
dbd7a03
 
 
 
e045c4a
2dba94f
 
 
 
 
 
 
 
 
 
dbd7a03
2dba94f
 
dbd7a03
2dba94f
 
dbd7a03
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import gradio as gr
import pandas as pd
import json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from collections import Counter
from apscheduler.schedulers.background import BackgroundScheduler

from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, LINKS, INTRODUCTION_TEXT, LEADERBOARD_TEXT, CITATION_BUTTON_LABEL, EVALUATION_DETAILS, CITATION_BUTTON_TEXT, model_hyperlink, SUBMIT_INTRODUCTION

TOKEN = os.environ.get("TOKEN", None)

OWNER = "Online-Mind2Web"
YEAR_VERSION = "2025"
LOCAL_DEBUG = True

def get_dataframe_from_results(eval_path):
    df = pd.read_csv(eval_path)
    df = df.sort_values(by=["Average SR"], ascending=False)
    for format_column in ['Easy', 'Medium', 'Hard', 'Average SR']:
        df[format_column] = df[format_column].map('{:.1f}'.format)
    return df

auto_eval_dataframe_test = get_dataframe_from_results('./auto_Mind2Web-Online - Leaderboard_data.csv')
human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
TYPES = ["str", "str", "str", "str", "number", "number", "number", "number", "str"]

def refresh():
    auto_eval_dataframe_test = get_dataframe_from_results('./auto_Mind2Web-Online - Leaderboard_data.csv')
    human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
    return auto_eval_dataframe_test, human_eval_dataframe_test

def plot_heatmap_with_performance_bar(json_file):
    with open(json_file, "r") as f:
        data = json.load(f)

    agents = [k for k in data[0].keys() if k.endswith("_human_label")]
    records = []
    original_ids = [task["task_id"] for task in data]

    for task in data:
        task_id = task["task_id"]
        for agent in agents:
            raw_val = task.get(agent, "0")
            try:
                val = int(raw_val)
            except ValueError:
                val = 0
            val = 1 if val == 1 else 0
            records.append({
                "Task ID": task_id,
                "Agent": agent.replace("_human_label", ""),
                "Success": val
            })

    df = pd.DataFrame(records)
    pivot = df.pivot_table(index="Agent", columns="Task ID", values="Success", aggfunc="max")

    for task_id in original_ids:
        if task_id not in pivot.columns:
            pivot[task_id] = 0
    pivot = pivot[original_ids]

    agent_success_rate = pivot.sum(axis=1) / pivot.shape[1]
    pivot["SuccessRate"] = agent_success_rate
    pivot = pivot.sort_values(by="SuccessRate", ascending=False)
    pivot = pivot.drop(columns=["SuccessRate"])

    agent_name_map = {
    "Operator": "Operator",
    "Agent-E": "Agent-E",
    "Browser_Use": "Browser Use",
    "Claude_Computer_Use": "Claude Computer Use",
    "SeeAct": "SeeAct"
    }
    sorted_agents = pivot.index.tolist()
    pivot.index = [
        f"{agent_name_map.get(agent, agent)} ({agent_success_rate[agent]*100:.1f}%)"
        for agent in sorted_agents
    ]

    custom_labels = [["Success" if val == 1 else "Failure" for val in row] for row in pivot.values]
    any_agent_solved = pivot.max(axis=0).sum()
    best_agent_solved = pivot.sum(axis=1).max()
    total_tasks = len(original_ids)

    fig = make_subplots(
        rows=2, cols=1,
        row_heights=[0.8, 0.2],
        vertical_spacing=0.08,
        subplot_titles=("TASK ID", ""),
        shared_xaxes=False
    )

    fig.add_trace(go.Heatmap(
        z=pivot.values,
        x=pivot.columns,
        y=pivot.index,
        colorscale=[[0, "white"], [1, "skyblue"]],
        zmin=0,
        zmax=1,
        showscale=False,
        customdata=custom_labels,
        hovertemplate="Agent: %{y}<br>Task ID: %{x}<br>Completion: %{customdata}<extra></extra>"
    ), row=1, col=1)

    fig.add_trace(go.Bar(
        y=["Any agent", "Best agent"],
        x=[any_agent_solved, best_agent_solved],
        orientation='h',
        marker_color=["dodgerblue", "mediumseagreen"],
        text=[
            f"{int(any_agent_solved)}/{total_tasks} ({any_agent_solved / total_tasks:.1%})",
            f"{int(best_agent_solved)}/{total_tasks} ({best_agent_solved / total_tasks:.1%})"
        ],
        textposition="auto",
        showlegend=False
    ), row=2, col=1)

    fig.add_trace(go.Scatter(
        x=[None], y=[None],
        mode='markers',
        marker=dict(size=10, color='skyblue'),
        name='Success'
    ))
    fig.add_trace(go.Scatter(
        x=[None], y=[None],
        mode='markers',
        marker=dict(size=10, color='white', line=dict(width=1, color='black')),
        name='Failure'
    ))

    fig.update_xaxes(range=[0, total_tasks], row=2, col=1)
    fig.update_layout(
        height=600,
        xaxis=dict(showticklabels=False),
        yaxis=dict(title="Agent"),
        yaxis2=dict(title=""),
        margin=dict(t=60)
    )
    return fig

def gradio_plot_wrapper(json_file):
    return plot_heatmap_with_performance_bar(json_file.name)

demo = gr.Blocks(css="""#human-leaderboard-table { width: auto; min-width: calc(100% + 20px); }""")

with demo:
    gr.HTML(TITLE)
    gr.HTML(LINKS)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                lines=10,
            ) 

    gr.Markdown(LEADERBOARD_TEXT, elem_classes="markdown-text")

    with gr.Tab("Human Evaluation", elem_id="human-tab", id=1):
        human_leaderboard_table_test = gr.Dataframe(
            value=human_eval_dataframe_test,
            datatype=TYPES,
            interactive=False,
            wrap=False
        )
        gr.Markdown("### Visualization")
        gr.Markdown("This figure presents a fine-grained heatmap illustrating task-level completion across different agents. Each row corresponds to a specific agent, and each column represents a task (identified by its task ID). Blue bars indicate successful completions, while white spaces denote failures. Any agent: A task is considered successful if at least one agent is able to complete it. (This style of visualization is inspired by [HAL](https://hal.cs.princeton.edu/).)")
        fig = plot_heatmap_with_performance_bar("./human_label.json")
        gr.Plot(fig)
        gr.Markdown(EVALUATION_DETAILS)

    with gr.Tab("Auto Evaluation", elem_id="auto-tab", id=2):
        auto_leaderboard_table_test = gr.Dataframe(
            value=auto_eval_dataframe_test,
            datatype=TYPES,
            interactive=False,
            wrap=False
        )

    with gr.Tab("Submission Guideline", elem_id="submit-tab", id=3):
        with gr.Row():
            gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[auto_leaderboard_table_test, human_leaderboard_table_test],
    )


scheduler = BackgroundScheduler()
scheduler.start()

if __name__ == "__main__":
    demo.launch(debug=True)