File size: 10,183 Bytes
25cae60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright 2022 - Valeo Comfort and Driving Assistance - valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F

from tqdm import tqdm
from scipy import ndimage

from evaluation.metrics.average_meter import AverageMeter
from evaluation.metrics.f_measure import FMeasure
from evaluation.metrics.iou import compute_iou
from evaluation.metrics.mae import compute_mae
from evaluation.metrics.pixel_acc import compute_pixel_accuracy
from evaluation.metrics.s_measure import SMeasure

from misc import batch_apply_bilateral_solver


@torch.no_grad()
def write_metric_tf(
    writer,
    metrics,
    n_iter = -1,
    name = ""
):
    writer.add_scalar(
        f"Validation/{name}iou_pred",
        metrics["ious"].avg,
        n_iter,
    )
    writer.add_scalar(
        f"Validation/{name}acc_pred",
        metrics["pixel_accs"].avg,
        n_iter,
    )
    writer.add_scalar(
        f"Validation/{name}f_max",
        metrics["f_maxs"].avg,
        n_iter,
    )

@torch.no_grad()
def eval_batch(
    batch_gt_masks, 
    batch_pred_masks,
    metrics_res={},
    reset=False
):
    """
    Evaluation code adapted from SelfMask: https://github.com/NoelShin/selfmask
    """

    f_values = {}
    # Keep track of f_values for each threshold
    for i in range(255):  # should equal n_bins in metrics/f_measure.py
        f_values[i] = AverageMeter()

    if metrics_res == {}:
        metrics_res["f_scores"] = AverageMeter()
        metrics_res["f_maxs"] = AverageMeter()
        metrics_res["f_maxs_fixed"] = AverageMeter()
        metrics_res["f_means"] = AverageMeter()
        metrics_res["maes"] = AverageMeter()
        metrics_res["ious"] = AverageMeter()
        metrics_res["pixel_accs"] = AverageMeter()
        metrics_res["s_measures"] = AverageMeter()

    if reset:
        metrics_res["f_scores"].reset()
        metrics_res["f_maxs"].reset()
        metrics_res["f_maxs_fixed"].reset()
        metrics_res["f_means"].reset()
        metrics_res["maes"].reset()
        metrics_res["ious"].reset()
        metrics_res["pixel_accs"].reset()
        metrics_res["s_measures"].reset()

    # iterate over batch dimension
    for _, (pred_mask, gt_mask) in enumerate(
        zip(batch_pred_masks, batch_gt_masks)
    ):
        assert pred_mask.shape == gt_mask.shape, f"{pred_mask.shape} != {gt_mask.shape}"
        assert len(pred_mask.shape) == len(gt_mask.shape) == 2
        # Compute
        # Binarize at 0.5 for IoU and pixel accuracy
        binary_pred = (pred_mask > 0.5).float().squeeze()
        iou = compute_iou(binary_pred, gt_mask)
        f_measures = FMeasure()(pred_mask, gt_mask)  # soft mask for F measure
        mae = compute_mae(binary_pred, gt_mask)
        pixel_acc = compute_pixel_accuracy(binary_pred, gt_mask)

        # Update
        metrics_res["ious"].update(val=iou.numpy(), n=1)
        metrics_res["f_scores"].update(val=f_measures["f_measure"].numpy(), n=1)
        metrics_res["f_maxs"].update(val=f_measures["f_max"].numpy(), n=1)
        metrics_res["f_means"].update(val=f_measures["f_mean"].numpy(), n=1)
        metrics_res["s_measures"].update(
            val=SMeasure()(pred_mask=pred_mask, gt_mask=gt_mask.to(torch.float32)), n=1
        )
        metrics_res["maes"].update(val=mae.numpy(), n=1)
        metrics_res["pixel_accs"].update(val=pixel_acc.numpy(), n=1)

        # Keep track of f_values for each threshold
        all_f = f_measures["all_f"].numpy()
        for k, v in f_values.items():
            v.update(val=all_f[k], n=1)
        # Then compute the max for the f_max_fixed
        metrics_res["f_maxs_fixed"].update(
            val=np.max([v.avg for v in f_values.values()]), n=1
        )

    results = {}
    # F-measure, F-max, F-mean, MAE, S-measure, IoU, pixel acc.
    results["f_measure"] = metrics_res["f_scores"].avg
    results["f_max"] = metrics_res["f_maxs"].avg
    results["f_maxs_fixed"] = metrics_res["f_maxs_fixed"].avg
    results["f_mean"] = metrics_res["f_means"].avg
    results["s_measure"] = metrics_res["s_measures"].avg
    results["mae"] = metrics_res["maes"].avg
    results["iou"] = float(iou.numpy())
    results["pixel_acc"] = metrics_res["pixel_accs"].avg

    return results, metrics_res

def evaluate_saliency(
    dataset,
    model,
    writer=None,
    batch_size=1,
    n_iter=-1,
    apply_bilateral=False,
    im_fullsize=True,
    method="pred",  # can also be "bkg",
    apply_weights: bool = True,
    evaluation_mode: str = 'single', # choices are ["single", "multi"]
):

    if im_fullsize:
        # Change transformation
        dataset.fullimg_mode()
        batch_size = 1

    valloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=2
    )

    sigmoid = nn.Sigmoid()

    metrics_res = {}
    metrics_res_bs = {}
    valbar = tqdm(enumerate(valloader, 0), leave=None)
    for i, data in valbar:
        inputs, _, gt_labels, _ = data
        inputs = inputs.to("cuda")
        gt_labels = gt_labels.to("cuda").float()

        # Forward step
        with torch.no_grad():
            preds, _, shape_f, att = model.forward_step(inputs, for_eval=True)

        if method == "pred":
            h, w = gt_labels.shape[-2:]
            preds_up = F.interpolate(
                preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False
            )[..., :h, :w]
            soft_preds = sigmoid(preds_up.detach()).squeeze(0)
            preds_up = (
                (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()
            )

        elif method == "bkg":
            bkg_mask_pred = model.compute_background_batch(
                att, shape_f,
                apply_weights=apply_weights,
            )
            # Transform bkg detection to foreground detection
            obj_mask = (
                ~bkg_mask_pred.bool()
            ).float()  # Obj labels is inverse of bkg

            # Fit predictions to image size
            preds_up = F.interpolate(
                obj_mask.unsqueeze(1),
                gt_labels.shape[-2:],
                mode="bilinear",
                align_corners=False,
            )
            preds_up = (preds_up > 0.5).float()
            soft_preds = preds_up  # not soft actually

        reset = True if i == 0 else False
        if evaluation_mode == 'single':
            labeled, nr_objects = ndimage.label(preds_up.squeeze().cpu().numpy())
            if nr_objects == 0:
                preds_up_one_cc = preds_up.squeeze()
                print("nr_objects == 0")
            else:
                nb_pixel = [np.sum(labeled == i) for i in range(nr_objects + 1)]
                pixel_order = np.argsort(nb_pixel)

                cc = [torch.Tensor(labeled == i) for i in pixel_order]
                cc = torch.stack(cc).cuda()

                # Find CC set as background, here not necessarily the biggest
                cc_background = (
                    (
                        (
                            (~(preds_up[None, :, :, :].bool())).float()
                            + cc[:, None, :, :].cuda()
                        )
                        > 1
                    ).sum(-1).sum(-1).argmax()
                )
                pixel_order = np.delete(
                    pixel_order, int(cc_background.cpu().numpy())
                )

                preds_up_one_cc = torch.Tensor(labeled == pixel_order[-1]).cuda()

            _, metrics_res = eval_batch(
                gt_labels,
                preds_up_one_cc.unsqueeze(0),
                metrics_res=metrics_res,
                reset=reset,
            )
            
        if writer is not None:
            write_metric_tf(writer, metrics_res, n_iter=n_iter, name=f"_{evaluation_mode}_")

        elif evaluation_mode == 'multi':
            # Eval without bilateral solver
            _, metrics_res = eval_batch(
                gt_labels,
                soft_preds.unsqueeze(0) if len(soft_preds.shape) == 2 else soft_preds,
                metrics_res=metrics_res,
                reset=reset,
            )  # soft preds needed for F beta measure

        # Apply bilateral solver
        preds_bs = None
        if apply_bilateral:
            get_all_cc = True if evaluation_mode == 'multi' else False
            preds_bs, _ = batch_apply_bilateral_solver(data,
                                                       preds_up.detach(),
                                                       get_all_cc = get_all_cc
                                                      )

            _, metrics_res_bs = eval_batch(
                gt_labels,
                preds_bs[None,:,:].float(),
                metrics_res=metrics_res_bs,
                reset=reset
            )

            if writer is not None:
                write_metric_tf(writer, metrics_res_bs, n_iter=n_iter, name=f"_{evaluation_mode}-BS_")

        bar_str = f"{dataset.name} | {evaluation_mode} mode | " \
                  f"F-max {metrics_res['f_maxs'].avg:.3f} " \
                  f"IoU {metrics_res['ious'].avg:.3f}, " \
                  f"PA {metrics_res['pixel_accs'].avg:.3f}"
        
        if apply_bilateral:
            bar_str += f" | with bilateral solver: " \
                       f"F-max {metrics_res_bs['f_maxs'].avg:.3f}, " \
                       f"IoU {metrics_res_bs['ious'].avg:.3f}, " \
                       f"PA. {metrics_res_bs['pixel_accs'].avg:.3f}"

        valbar.set_description(bar_str)

    # Go back to original transformation
    if im_fullsize:
        dataset.training_mode()