File size: 5,882 Bytes
b6aa467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import re
import string
import numpy as np
import torch
import torch.nn as nn
from nltk.corpus import stopwords
stop_words = set(stopwords.words('russian'))
from collections import Counter
from gensim.models import Word2Vec
import pandas as pd
import torch.nn.functional as F


HIDDEN_SIZE = 32
SEQ_LEN = 32
df = pd.read_json('healthcare_facilities_reviews.jsonl', lines=True)

def data_preprocessing(text: str) -> str:
    text = text.lower()
    text = re.sub('<.*?>', '', text) # html tags
    text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
    text = ' '.join([word for word in text.split() if word not in stop_words])
    text = [word for word in text.split() if not word.isdigit()]
    text = ' '.join(text)
    return text

contents = df['content'].tolist()
preprocessed = [data_preprocessing(content) for content in contents]

corpus = [word for text in preprocessed for word in text.split()]
sorted_words = Counter(corpus).most_common()

def get_words_by_freq(sorted_words: list[tuple[str, int]], n: int = 10) -> list:
    return list(filter(lambda x: x[1] > n, sorted_words))

sorted_words = get_words_by_freq(sorted_words, 100)
sorted_words[-10:]

vocab_to_int = {w:i+1 for i, (w,c) in enumerate(sorted_words)}

reviews_int = []
for text in preprocessed:
    r = [vocab_to_int[word] for word in text.split() if vocab_to_int.get(word)]
    reviews_int.append(r)

w2v_input = []
for review in preprocessed:
    cur_review = []
    for word in review.split():
        if vocab_to_int.get(word):
            cur_review.append(word)
    w2v_input.append(cur_review)

VOCAB_SIZE = len(vocab_to_int) + 1 

EMBEDDING_DIM = 64 

wv = Word2Vec(
    min_count=1, # минимальная встречаемость в корпусе 
    vector_size=EMBEDDING_DIM # размерность вектора для слова
    )
wv.build_vocab(w2v_input)

wv.train(
    corpus_iterable=w2v_input, 
    total_examples=wv.corpus_count, 
    epochs=10
    )
embedding_matrix = np.zeros((VOCAB_SIZE, EMBEDDING_DIM))

# Бежим по всем словам словаря: если слово есть, достаем его вектор
# если слова нет, то распечатываем его и пропускаем
for word, i in vocab_to_int.items():
    try:
        embedding_vector = wv.wv[word]
        embedding_matrix[i] = embedding_vector
    except KeyError as e:
        pass
        print(f'{e}: word: {word}')
        
# Создаем предобученный эмбеддинг – этот слой в нашей сети обучаться не будет
embedding_layer = nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))

def data_preprocessing(text: str) -> str:
    text = text.lower()
    text = re.sub('<.*?>', '', text) # html tags
    text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
    text = ' '.join([word for word in text.split() if word not in stop_words])
    text = [word for word in text.split() if not word.isdigit()]
    text = ' '.join(text)
    return text



def padding(review_int: list, seq_len: int) -> np.array: # type: ignore   
    features = np.zeros((len(review_int), seq_len), dtype = int)
    for i, review in enumerate(review_int):
        if len(review) <= seq_len:
            zeros = list(np.zeros(seq_len - len(review)))
            new = zeros + review
        else:
            new = review[: seq_len]
        features[i, :] = np.array(new)
            
    return features

def preprocess_single_string(
    input_string: str, 
    seq_len: int, 
    vocab_to_int: dict,
    verbose : bool = False
    ) -> torch.tensor:
    preprocessed_string = data_preprocessing(input_string)
    result_list = []
    for word in preprocessed_string.split():
        try: 
            result_list.append(vocab_to_int[word])
        except KeyError as e:
            if verbose:
                print(f'{e}: not in dictionary!')
            pass
    result_padded = padding([result_list], seq_len)[0]

    return torch.tensor(result_padded)

class BahdanauAttention(nn.Module):
    def __init__(
    self,
    hidden_size: int = HIDDEN_SIZE
    ) -> None:

        super().__init__()
        self.hidden_size = hidden_size
        self.W = nn.Linear(hidden_size, hidden_size)
        self.U = nn.Linear(hidden_size, hidden_size)
        self.V = nn.Linear(hidden_size, 1)
        self.tanh = nn.Tanh()

    def forward(
        self,
        keys: torch.Tensor, # BATCH_SIZE x SEQ_LEN x HIDDEN_SIZE
        query: torch.Tensor # BATCH_SIZE x HIDDEN_SIZE
        ):

        query = query.unsqueeze(1) # BATCH_SIZE x 1 x HIDDEN_SIZE
        r_query = self.W(query) # BATCH_SIZE x 1 x HIDDEN_SIZE

        r_keys = self.U(keys) # BATCH_SIZE x SEQ_LEN x HIDDEN_SIZE

        scores = self.V(torch.tanh(r_query + r_keys)) # BATCH_SIZE x SEQ_LEN x 1
        scores = scores.squeeze(-1) # BATCH_SIZE x SEQ_LEN
        att_weights = F.softmax(scores, dim=1) # BATCH_SIZE x SEQ_LEN
        context = torch.bmm(att_weights.unsqueeze(1), keys).squeeze(1) # BATCH_SIZE x HIDDEN_SIZE
        return context, att_weights

class LSTMBahdanauAttention(nn.Module):
    def __init__(self) -> None:
        super().__init__()

        # self.embedding = nn.Embedding(VOCAB_SIZE, EMBEDDING_DIM)
        self.embedding = embedding_layer
        self.lstm = nn.LSTM(EMBEDDING_DIM, HIDDEN_SIZE, batch_first=True)
        self.attn = BahdanauAttention(HIDDEN_SIZE)
        self.clf = nn.Sequential(
        nn.Linear(HIDDEN_SIZE, 128),
        nn.Dropout(),
        nn.Tanh(),
        nn.Linear(128, 1)
        )

    def forward(self, x):
        embeddings = self.embedding(x)
        outputs, (h_n, _) = self.lstm(embeddings)
        context, att_weights = self.attn(outputs, h_n.squeeze(0))
        out = self.clf(context)
        return out, att_weights