Spaces:
Runtime error
Runtime error
File size: 8,115 Bytes
2879792 6295354 2879792 6295354 6d82372 6295354 2879792 6d82372 6295354 2879792 6d82372 2879792 185eb2a 2879792 185eb2a 6295354 2879792 6295354 2879792 6295354 2879792 6295354 185eb2a 2879792 185eb2a 2879792 6295354 402fd8a 6d82372 402fd8a 185eb2a 2879792 185eb2a 2879792 6295354 296923b 6d82372 296923b 6d82372 185eb2a 6295354 185eb2a 2879792 185eb2a 296923b 185eb2a 6295354 2879792 185eb2a 2879792 6d82372 2879792 6d82372 185eb2a 2879792 6d82372 185eb2a 296923b 185eb2a 2879792 185eb2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import logging
from pathlib import Path
from typing import List, Optional, Tuple, Dict
import json
from dotenv import load_dotenv
load_dotenv()
from queue import Empty, Queue
from threading import Thread
import gradio as gr
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.prompts import HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.schema import AIMessage, BaseMessage, HumanMessage, SystemMessage
from js import get_window_url_params
from callback import QueueCallback
from db import (
User,
Chat,
create_user,
get_client,
get_user_by_username,
add_chat_by_uid,
)
MODELS_NAMES = ["gpt-3.5-turbo", "gpt-4"]
DEFAULT_TEMPERATURE = 0.7
ChatHistory = List[str]
logging.basicConfig(
format="[%(asctime)s %(levelname)s]: %(message)s", level=logging.INFO
)
# load redis client
client = get_client()
# load up our system prompt
system_message_prompt = SystemMessagePromptTemplate.from_template(
Path("prompts/system.prompt").read_text()
)
# for the human, we will just inject the text
human_message_prompt_template = HumanMessagePromptTemplate.from_template("{text}")
with open("data/patients.json") as f:
patiens = json.load(f)
patients_names = [el["name"] for el in patiens]
def message_handler(
chat: Optional[ChatOpenAI],
message: str,
chatbot_messages: ChatHistory,
messages: List[BaseMessage],
) -> Tuple[ChatOpenAI, str, ChatHistory, List[BaseMessage]]:
if chat is None:
# in the queue we will store our streamed tokens
queue = Queue()
# let's create our default chat
chat = ChatOpenAI(
model_name=MODELS_NAMES[0],
temperature=DEFAULT_TEMPERATURE,
streaming=True,
callbacks=([QueueCallback(queue)]),
)
else:
# hacky way to get the queue back
queue = chat.callbacks[0].queue
job_done = object()
logging.info("asking question to GPT")
# let's add the messages to our stuff
messages.append(HumanMessage(content=message))
chatbot_messages.append((message, ""))
# this is a little wrapper we need cuz we have to add the job_done
def task():
chat(messages)
queue.put(job_done)
# now let's start a thread and run the generation inside it
t = Thread(target=task)
t.start()
# this will hold the content as we generate
content = ""
# now, we read the next_token from queue and do what it has to be done
while True:
try:
next_token = queue.get(True, timeout=1)
if next_token is job_done:
break
content += next_token
chatbot_messages[-1] = (message, content)
yield chat, "", chatbot_messages, messages
except Empty:
continue
# finally we can add our reply to messsages
messages.append(AIMessage(content=content))
logging.debug(f"reply = {content}")
logging.info(f"Done!")
return chat, "", chatbot_messages, messages
def on_clear_click() -> Tuple[str, List, List]:
return "", [], []
def on_done_click(
chatbot_messages: ChatHistory, patient: str, user: User
) -> Tuple[str, List, List]:
logging.info(f"Saving chat for user={user}")
add_chat_by_uid(
client, Chat(patient=patient, messages=chatbot_messages), user["uid"]
)
return on_clear_click()
def on_apply_settings_click(model_name: str, temperature: float):
logging.info(
f"Applying settings: model_name={model_name}, temperature={temperature}"
)
chat = ChatOpenAI(
model_name=model_name,
temperature=temperature,
streaming=True,
callbacks=[QueueCallback(Queue())],
)
# don't forget to nuke our queue
chat.callbacks[0].queue.empty()
return chat, *on_clear_click()
def on_drop_down_change(selected_item, messages):
index = patients_names.index(selected_item)
patient = patiens[index]
messages = [system_message_prompt.format(patient=patient)]
print(f"You selected: {selected_item}", index)
return patient, patient, [], messages
def on_demo_load(url_params):
username = url_params["username"]
logging.info(f"Getting user for username={username}")
create_user(client, User(username=username, uid=None))
user = get_user_by_username(client, username)
logging.info(f"User {user}")
print(f"got url_params: {url_params}")
return user, f"Nice to see you {user['username']} 👋"
url_params = gr.JSON({}, visible=False, label="URL Params")
# some css why not, "borrowed" from https://huggingface.co/spaces/ysharma/Gradio-demo-streaming/blob/main/app.py
with gr.Blocks(
css="""#col_container {width: 700px; margin-left: auto; margin-right: auto;}
#chatbot {height: 400px; overflow: auto;}"""
) as demo:
# here we keep our state so multiple user can use the app at the same time!
messages = gr.State([system_message_prompt.format(patient=patiens[0])])
# same thing for the chat, we want one chat per use so callbacks are unique I guess
chat = gr.State(None)
user = gr.State(None)
patient = gr.State(patiens[0])
# see here https://github.com/gradio-app/gradio/discussions/2949#discussioncomment-5278991
url_params.render()
with gr.Column(elem_id="col_container"):
gr.Markdown("# Welcome to OscePal! 👨⚕️🧑⚕️")
welcome_markdown = gr.Markdown("")
demo.load(
fn=on_demo_load,
inputs=[url_params],
outputs=[user, welcome_markdown],
_js=get_window_url_params,
)
chatbot = gr.Chatbot()
with gr.Column():
message = gr.Textbox(label="chat input")
message.submit(
message_handler,
[chat, message, chatbot, messages],
[chat, message, chatbot, messages],
queue=True,
)
with gr.Row():
submit = gr.Button("Send Message", variant="primary")
submit.click(
message_handler,
[chat, message, chatbot, messages],
[chat, message, chatbot, messages],
)
done = gr.Button("Done")
done.click(
on_done_click,
[chatbot, patient, user],
[message, chatbot, messages],
)
with gr.Row():
with gr.Column():
clear = gr.Button("Clear")
clear.click(
on_clear_click,
[],
[message, chatbot, messages],
queue=False,
)
with gr.Accordion("Settings", open=False):
model_name = gr.Dropdown(
choices=MODELS_NAMES, value=MODELS_NAMES[0], label="model"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="temperature",
interactive=True,
)
apply_settings = gr.Button("Apply")
apply_settings.click(
on_apply_settings_click,
[model_name, temperature],
[chat, message, chatbot, messages],
)
with gr.Column():
patients_names = [el["name"] for el in patiens]
dropdown = gr.Dropdown(
choices=patients_names,
value=patients_names[0],
interactive=True,
label="Patient",
)
patient_card = gr.JSON(patient.value, visible=True, label="Patient card")
dropdown.change(
fn=on_drop_down_change,
inputs=[dropdown, messages],
outputs=[patient_card, patient, chatbot, messages],
)
demo.queue()
demo.launch()
|