File size: 12,408 Bytes
e23742d
 
 
 
 
 
 
 
90440c8
 
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90440c8
 
 
c181c85
90440c8
c181c85
 
 
 
 
90440c8
af04ad9
18e4ba8
f819f0f
90440c8
 
b564786
90440c8
 
 
 
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f19731
e23742d
 
8f19731
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af04ad9
 
 
 
 
e23742d
f819f0f
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90440c8
 
 
 
 
 
 
 
 
 
 
 
 
 
af04ad9
 
 
e23742d
 
 
 
 
 
 
 
692eee7
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376286c
e23742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import gradio as gr
import requests
import langid
import base64
import json
import time
import re
import hashlib
import hash_code_for_cached_output


API_URL = os.environ.get("API_URL")
supported_languages = ['zh', 'en', 'ja', 'ko', 'es', 'fr']
supported_styles = {
    'zh': "zh_default",
    'en': [
        "en_default",
        "en_us",
        "en_br",
        "en_au",
        "en_in"
    ],
    "es": "es_default",
    "fr": "fr_default",
    "ja": "jp_default",
    "ko": "kr_default"
}

output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)

def audio_to_base64(audio_file):
    with open(audio_file, "rb") as audio_file:
        audio_data = audio_file.read()
        base64_data = base64.b64encode(audio_data).decode("utf-8")
    return base64_data

def count_chars_words(sentence):
    segments = re.findall(r'[\u4e00-\u9fa5]+|\w+', sentence)
    
    char_count = 0
    word_count = 0
    for segment in segments:
        if re.match(r'[\u4e00-\u9fa5]+', segment): 
            char_count += len(segment)
        else: 
            word_count += len(segment.split())
    return char_count + word_count

def predict(prompt, style, audio_file_pth, speed, agree):
    # initialize a empty info
    text_hint = ''
    # agree with the terms
    if agree == False:
        text_hint += '[ERROR] Please accept the Terms & Condition!\n'
        gr.Warning("Please accept the Terms & Condition!")
        return (
            text_hint,
            None,
            None,
        )

    # Before we get into inference, we will detect if it is from example table or default value
    # If so, we use a cached Audio. Noted that, it is just for demo efficiency.
    # hash code were generated by `hash_code_for_cached_output.py`
    # this hash get from gradio console
    cached_outputs = {
        "af39e1f1ff_60565a5c20_en_us" : "cached_outputs/0.wav",
        "af39e1f1ff_420ab8211d_en_us" : "cached_outputs/1.wav",
        "ced034cc22_0f96bf44f5_es_default" : "cached_outputs/2.wav",
        "d3172b178d_3fef5adc6f_zh_default" : "cached_outputs/3.wav",
        "cda6998e1a_9897b60a4e_jp_default" : "cached_outputs/4.wav"
    }
    unique_code = hash_code_for_cached_output.get_unique_code(audio_file_pth, prompt, style)
    print("audio_file_pth is", audio_file_pth)
    print("unique_code is", unique_code)
    if unique_code in list(cached_outputs.keys()):
        return (
            'We get the cached output for you, since you are trying to generate an example cloning.',
            cached_outputs[unique_code],
            audio_file_pth,
        )

    # first detect the input language
    language_predicted = langid.classify(prompt)[0].strip()  
    print(f"Detected language:{language_predicted}")


    if language_predicted not in supported_languages:
        text_hint += f"[ERROR] The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}\n"
        gr.Warning(
            f"The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}"
        )

        return (
            text_hint,
            None,
            None,
        )

    # check the style
    if style not in supported_styles[language_predicted]:
        text_hint += f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.\n"
        gr.Warning(f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.")

    prompt_length = count_chars_words(prompt)

    speaker_wav = audio_file_pth

    if prompt_length < 2:
        text_hint += f"[ERROR] Please give a longer prompt text \n"
        gr.Warning("Please give a longer prompt text")
        return (
            text_hint,
            None,
            None,
        )
    if prompt_length > 50000:
        text_hint += f"[ERROR] Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749 \n"
        gr.Warning(
            "Text length limited to 50000 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749"
        )
        return (
            text_hint,
            None,
            None,
        )

    save_path = f'{output_dir}/output.wav'
    speaker_audio_base64 = audio_to_base64(speaker_wav)
    if style == 'en_us':  # we update us accent
        style = 'en_newest'
    data = {
        "text": prompt,
        "reference_speaker": speaker_audio_base64,
        "language": style,
        "speed": speed
    }
    
    start = time.time()
    # Send the data as a POST request
    response = requests.post(API_URL, json=data, timeout=60)
    print(f'Get response successfully within {time.time() - start}')

    # Check the response
    if response.status_code == 200:
        try:
            json_data = json.loads(response.content)
            text_hint += f"[ERROR] {json_data['error']} \n"
            gr.Warning(
                f"[ERROR] {json_data['error']} \n"
            )
            return (
                text_hint,
                None,
                None,
            )
        except:
            with open(save_path, 'wb') as f:
                f.write(response.content)
    else:
        text_hint += f"[HTTP ERROR] {response.status_code} - {response.text} \n"
        gr.Warning(
            f"[HTTP ERROR] {response.status_code} - {response.text} \n"
        )
        return (
            text_hint,
            None,
            None,
        )
    text_hint += f'''Get response successfully \n'''
    return (
        text_hint,
        save_path,
        speaker_wav,
    )


title = "MyShell OpenVoice V2"

description = """
In December 2023, we released [OpenVoice V1](https://huggingface.co/spaces/myshell-ai/OpenVoice), an instant voice cloning approach that replicates a speaker's voice and generates speech in multiple languages using only a short audio clip. OpenVoice V1 enables granular control over voice styles, replicates the tone color of the reference speaker and achieves zero-shot cross-lingual voice cloning.
"""

description_v2 = """
In April 2024, we released **OpenVoice V2**, which includes all features in V1 and has: 
 - **Better Audio Quality**. OpenVoice V2 adopts a different training strategy that delivers better audio quality. 
 - **Native Multi-lingual Support**. English, Spanish, French, Chinese, Japanese and Korean are natively supported in OpenVoice V2. 
 - **Free Commercial Use**. Starting from April 2024, both V2 and V1 are released under MIT License. Free for commercial use.
"""

markdown_table = """
<div align="center" style="margin-bottom: 10px;">

|               |               |               |
| :-----------: | :-----------: | :-----------: | 
| **OpenSource Repo** | **Project Page** | **Join the Community** |        
| <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> | [OpenVoice](https://research.myshell.ai/open-voice) | [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) |

</div>
"""

markdown_table_v2 = """
<div align="center" style="margin-bottom: 2px;">

|               |               |               |              |
| :-----------: | :-----------: | :-----------: | :-----------: | 
| **Github Repo** | <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> |  **Project Page** |  [OpenVoice](https://research.myshell.ai/open-voice) |     

| | |
| :-----------: | :-----------: |
**Join the Community** |   [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) |

</div>
"""
content = """
<div>
  <strong>If the generated voice does not sound like the reference voice, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/docs/QA.md'>this QnA</a>.</strong> <strong>If you want to deploy the model by yourself and perform inference, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/demo_part3.ipynb'>this jupyter notebook</a>.</strong>
</div>
"""
wrapped_markdown_content = f"<div style='border: 1px solid #000; padding: 10px;'>{content}</div>"


examples = [
    [
        "Did you ever hear a folk tale about a giant turtle?",
        'en_us',
        "examples/speaker0.mp3",
        True,
    ],[
        "El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante.",
        'es_default',
        "examples/speaker1.mp3",
        True,
    ],[
        "我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。",
        'zh_default',
        "examples/speaker2.mp3",
        True,
    ],[
        "彼は毎朝ジョギングをして体を健康に保っています。",
        'jp_default',
        "examples/speaker3.mp3",
        True,
    ],
]

with gr.Blocks(analytics_enabled=False) as demo:

    with gr.Row():
        with gr.Column():
            with gr.Row():
                gr.Markdown(
                    """
                    ## <img src="https://huggingface.co/spaces/myshell-ai/OpenVoice/raw/main/logo.jpg" height="40"/>
                    """
                )
            with gr.Row():    
                gr.Markdown(markdown_table_v2)
            with gr.Row():
                gr.Markdown(description)
        with gr.Column():
            gr.Video('./openvoicev2.mp4', autoplay=True)

    with gr.Row():
        gr.Markdown(description_v2)

    with gr.Row():
        gr.HTML(wrapped_markdown_content)

    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Text Prompt",
                info="One or two sentences at a time is better. Up to 200 text characters.",
                value="The bustling city square bustled with street performers, tourists, and local vendors.",
            )
            style_gr = gr.Dropdown(
                label="Style",
                info="Select a style of output audio for the synthesised speech. (Chinese only support 'default' now)",
                choices=["en_default", "en_us", "en_br", "en_au", "en_in", "es_default", "fr_default", "jp_default", "zh_default", "kr_default",],
                max_choices=1,
                value="en_us",
            )
            ref_gr = gr.Audio(
                label="Reference Audio",
                info="Click on the ✎ button to upload your own target speaker audio",
                type="filepath",
                value="examples/speaker0.mp3",
            )
            tos_gr = gr.Checkbox(
                label="Agree",
                value=False,
                info="I agree to the terms of the MIT license-: https://github.com/myshell-ai/OpenVoice/blob/main/LICENSE",
            )

            tts_button = gr.Button("Send", elem_id="send-btn", visible=True)


        with gr.Column():
            out_text_gr = gr.Text(label="Info")
            audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
            ref_audio_gr = gr.Audio(label="Reference Audio Used")

            gr.Examples(examples,
                        label="Examples",
                        inputs=[input_text_gr, style_gr, ref_gr, tos_gr],
                        outputs=[out_text_gr, audio_gr, ref_audio_gr],
                        fn=predict,
                        cache_examples=False,)
            tts_button.click(predict, [input_text_gr, style_gr, ref_gr, tos_gr], outputs=[out_text_gr, audio_gr, ref_audio_gr])

demo.queue(concurrency_count=6)  
demo.launch(debug=True, show_api=True)