File size: 5,768 Bytes
2df1cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88176b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df1cff
 
 
 
ab65e89
2df1cff
 
 
 
 
c7f853f
2df1cff
 
 
 
88176b6
2df1cff
 
 
 
c7f853f
2df1cff
88176b6
 
 
2df1cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f853f
2df1cff
 
 
 
 
 
c7f853f
 
2df1cff
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import monai
import torch
import pandas as pd
import nibabel as nib
import numpy as np
from monai.data import DataLoader
from monai.utils.enums import CommonKeys
from scipy import ndimage
from monai.data import Dataset
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
    Activationsd,
    AsDiscreted,
    Compose,
    ConcatItemsd,
    KeepLargestConnectedComponentd,
    LoadImaged,
    EnsureChannelFirstd,
    EnsureTyped,
    SaveImaged,
    ScaleIntensityd,
    NormalizeIntensityd,
    Spacingd,
    Orientationd,
)

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# print("Using device:", device)

# model = monai.networks.nets.UNet(
#     in_channels=1,
#     out_channels=3,
#     spatial_dims=3,
#     channels=[16, 32, 64, 128, 256, 512],
#     strides=[2, 2, 2, 2, 2],
#     num_res_units=4,
#     act="PRELU",
#     norm="BATCH",
#     dropout=0.15,
# )

# model.load_state_dict(torch.load("anatomy.pt", map_location=device))

# keys = ("t2", "t2_anatomy_reader1")
# transforms = Compose(
#     [
#         LoadImaged(keys=keys, image_only=False),
#         EnsureChannelFirstd(keys=keys),
#         Spacingd(keys=keys, pixdim=[0.5, 0.5, 0.5], mode=("bilinear", "nearest")),
#         Orientationd(keys=keys, axcodes="RAS"),
#         ScaleIntensityd(keys=keys, minv=0, maxv=1),
#         NormalizeIntensityd(keys=keys),
#         EnsureTyped(keys=keys),
#         ConcatItemsd(keys=("t2"), name=CommonKeys.IMAGE, dim=0),
#         ConcatItemsd(keys=("t2_anatomy_reader1"), name=CommonKeys.LABEL, dim=0),
#     ],
# )

# postprocessing = Compose(
#     [
#         EnsureTyped(keys=[CommonKeys.PRED, CommonKeys.LABEL]),
#         KeepLargestConnectedComponentd(
#             keys=CommonKeys.PRED, 
#             applied_labels=list(range(1, 3))
#         ),
#     ],
# )

keys = ("t2")
transforms = Compose(
    [
        LoadImaged(keys=keys, image_only=False),
        EnsureChannelFirstd(keys=keys),
        Spacingd(keys=keys, pixdim=[0.5, 0.5, 0.5], mode=("bilinear")),
        Orientationd(keys=keys, axcodes="RAS"),
        ScaleIntensityd(keys=keys, minv=0, maxv=1),
        NormalizeIntensityd(keys=keys),
        EnsureTyped(keys=keys),
        ConcatItemsd(keys=("t2"), name=CommonKeys.IMAGE, dim=0),
    ],
)

postprocessing = Compose(
    [
        EnsureTyped(keys=[CommonKeys.PRED]),
        KeepLargestConnectedComponentd(
            keys=CommonKeys.PRED, 
            applied_labels=list(range(1, 3))
        ),
    ],
)



inferer = monai.inferers.SlidingWindowInferer(
    roi_size=(96, 96, 96),
    sw_batch_size=4,
    overlap=0.5,
)

def resize_image(image: np.array, target_shape: tuple):
    depth_factor = target_shape[0] / image.shape[0]
    width_factor = target_shape[1] / image.shape[1]
    height_factor = target_shape[2] / image.shape[2]

    return ndimage.zoom(image, (depth_factor, width_factor, height_factor), order=1)

# model.eval()
# with torch.no_grad():
#     for i in range(len(test_ds)):
#         example = test_ds[i]
#         label = example["t2_anatomy_reader1"]
#         input_tensor = example["t2"].unsqueeze(0)
#         input_tensor = input_tensor.to(device)
#         output_tensor = inferer(input_tensor, model)
#         output_tensor = output_tensor.argmax(dim=1, keepdim=False)
#         output_tensor = output_tensor.squeeze(0).to(torch.device("cpu"))

#         output_tensor = postprocessing({"pred": output_tensor, "label": label})["pred"]
#         output_tensor = output_tensor.numpy().astype(np.uint8)
#         target_shape = example["t2_meta_dict"]["spatial_shape"]
#         output_tensor = resize_image(output_tensor, target_shape)
        
#         # flip first two dimensions
#         output_tensor = np.flip(output_tensor, axis=0)
#         output_tensor = np.flip(output_tensor, axis=1)

#         new_image = nib.Nifti1Image(output_tensor, affine=example["t2_meta_dict"]["affine"])
#         nib.save(new_image, f"test/{i+1:03}/predicted.nii.gz")
        
#         print("Saved", i+1)


def make_inference(data_dict:list) -> str:

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    print("Using device:", device)

    model = monai.networks.nets.UNet(
        in_channels=1,
        out_channels=3,
        spatial_dims=3,
        channels=[16, 32, 64, 128, 256, 512],
        strides=[2, 2, 2, 2, 2],
        num_res_units=4,
        act="PRELU",
        norm="BATCH",
        dropout=0.15,
    )

    model.load_state_dict(torch.load("anatomy.pt", map_location=device))


    test_ds = Dataset(
        data=data_dict,
        transform=transforms,
    )
    model.eval()
    with torch.no_grad():
        example = test_ds[0]
        # label = example["t2_anatomy_reader1"]
        input_tensor = example["t2"].unsqueeze(0)
        input_tensor = input_tensor.to(device)
        output_tensor = inferer(input_tensor, model)
        output_tensor = output_tensor.argmax(dim=1, keepdim=False)
        output_tensor = output_tensor.squeeze(0).to(torch.device("cpu"))

        # output_tensor = postprocessing({"pred": output_tensor, "label": label})["pred"]
        output_tensor = postprocessing({"pred": output_tensor})["pred"]
        output_tensor = output_tensor.numpy().astype(np.uint8)
        target_shape = example["t2_meta_dict"]["spatial_shape"]
        output_tensor = resize_image(output_tensor, target_shape)
        
        # flip first two dimensions
        output_tensor = np.flip(output_tensor, axis=0)
        output_tensor = np.flip(output_tensor, axis=1)

        new_image = nib.Nifti1Image(output_tensor, affine=example["t2_meta_dict"]["affine"])
        nib.save(new_image, "predicted.nii.gz")
    return "predicted.nii.gz"