File size: 4,253 Bytes
7f86517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import cv2
import torch

from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
import argparse
import glob
import multiprocessing as mp
import numpy as np
import os
import tempfile
import time
import warnings
import cv2
import subprocess
import tqdm

from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger

import gradio as gr

TOTAL_FRAMES = 40

subprocess.run(["git", "clone", "https://github.com/wjf5203/VNext"])

def setup_cfg(cfg):
    # load config from file and command-line arguments
    cfg = get_cfg()
    # To use demo for Panoptic-DeepLab, please uncomment the following two lines.
    # from detectron2.projects.panoptic_deeplab import add_panoptic_deeplab_config  # noqa
    # add_panoptic_deeplab_config(cfg)
    cfg.merge_from_file("VNext/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml")
    # Set score_threshold for builtin models
    cfg.MODEL.RETINANET.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = 0.5
    cfg.freeze()
    return cfg
    
predictor = DefaultPredictor(setup_cfg({}))
metadata = MetadataCatalog.get("__unused")

def run_on_video(video, total_frames):
    video_visualizer = VideoVisualizer(metadata, ColorMode.IMAGE)

    def _frame_from_video(video):
        while video.isOpened():
            success, frame = video.read()
            if success:
                yield frame
            else:
                break

    def process_predictions(frame, predictions):
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        if "panoptic_seg" in predictions:
            panoptic_seg, segments_info = predictions["panoptic_seg"]
            vis_frame = video_visualizer.draw_panoptic_seg_predictions(
                frame, panoptic_seg.to("cpu"), segments_info
            )
        elif "instances" in predictions:
            predictions = predictions["instances"].to("cpu")
            vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
        elif "sem_seg" in predictions:
            vis_frame = video_visualizer.draw_sem_seg(
                frame, predictions["sem_seg"].argmax(dim=0).to("cpu")
            )

        # Converts Matplotlib RGB format to OpenCV BGR format
        vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
        return vis_frame

    frame_gen = _frame_from_video(video)
    i = 0
    for frame in frame_gen:
      i += 1
      if i == total_frames:
        return
      yield process_predictions(frame, predictor(frame))


def inference(video):
  video = cv2.VideoCapture(video)
  
  width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
  height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

  frames_per_second = video.get(cv2.CAP_PROP_FPS)
  num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
  print(num_frames)

  if num_frames>TOTAL_FRAMES:
    num_frames=TOTAL_FRAMES

  codec, file_ext = (
    ("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4")
  )
  print(codec, file_ext)
  output_fname = "result.mp4"
  output_file = cv2.VideoWriter(
      filename=output_fname,
      fourcc=cv2.VideoWriter_fourcc(*codec),
      fps=float(frames_per_second),
      frameSize=(width, height),
      isColor=True,
  )
  for vis_frame in tqdm.tqdm(run_on_video(video, num_frames), total=num_frames):
      output_file.write(vis_frame)
  video.release()
  output_file.release()

  out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
  subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {output_fname} -c:v libx264 {out_file.name}".split())
  return out_file.name

video_interface = gr.Interface(
    fn=inference,
    inputs=[
        gr.Video(type="file"),
    ],
    outputs=gr.Video(type="file", format="mp4"),
    examples=[
        ["inps.mp4"],
    ],
    allow_flagging=False,
    allow_screenshot=False,
).launch(debug=True)