Spaces:
Runtime error
Runtime error
File size: 1,679 Bytes
9578c5b faedadd 9578c5b ce727a3 9578c5b faedadd 9578c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
ckpt_type = '1k'
tf_hub_url = 'gs://cloud-tpu-checkpoints/efficientnet/v2/hub/efficientnetv2-s/classification'
m = hub.KerasLayer(tf_hub_url, trainable=False)
m.build([None, 224, 224, 3]) # Batch input shape.
def get_imagenet_labels(filename):
labels = []
with open(filename, 'r') as f:
for line in f:
labels.append(line.split(' ')[1][:-1]) # split and remove line break.
return labels
classes = get_imagenet_labels("imagenet1k_labels.txt")
def classify(image):
image = tf.keras.preprocessing.image.img_to_array(image)
image = (image - 128.) / 128.
logits = m(tf.expand_dims(image, 0), False)
pred = tf.keras.layers.Softmax()(logits)
idx = tf.argsort(logits[0])[::-1][0].numpy()
return classes[idx]
title = "Interactive demo: EfficientNetV2"
description = "Demo for Google's EfficientNetV2. EfficientNetV2 (accepted at ICML 2021) consists of convolutional neural networks that aim for fast training speed for relatively small-scale datasets, such as ImageNet1k."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.00298'>EfficientNetV2: Smaller Models and Faster Training</a> | <a href='https://github.com/google/automl/tree/master/efficientnetv2'>Github Repo</a> | <a href='https://ai.googleblog.com/2021/09/toward-fast-and-accurate-neural.html'>Blog Post</a></p>"
iface = gr.Interface(fn=classify,
inputs=gr.inputs.Image(label="image", shape=(224,224)),
outputs='text',
title=title,
description=description,
enable_queue=True,
examples=[['panda.jpeg'], ["llamas.jpeg"], ["hot_dog.png"]],
article=article)
iface.launch()
|