File size: 9,404 Bytes
c4e6a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Union

from torchvision.transforms import ToTensor
from torchvision.utils import save_image
from tqdm import tqdm
import torch
from torch.optim.adam import Adam
import torch.nn.functional as nnf
import numpy as np
from PIL import Image


def load_512(image_path, left=0, right=0, top=0, bottom=0):
    if type(image_path) is str:
        image = np.array(Image.open(image_path))[:, :, :3]
    else:
        image = image_path
    h, w, c = image.shape
    left = min(left, w-1)
    right = min(right, w - left - 1)
    top = min(top, h - left - 1)
    bottom = min(bottom, h - top - 1)
    image = image[top:h-bottom, left:w-right]
    h, w, c = image.shape
    if h < w:
        offset = (w - h) // 2
        image = image[:, offset:offset + h]
    elif w < h:
        offset = (h - w) // 2
        image = image[offset:offset + w]
    image = np.array(Image.fromarray(image).resize((512, 512)))
    return image


def invert_image(args, ldm_stable, ldm_stable_config, prompts, exp_path):
    print("Start null text inversion")
    null_inversion = NullInversion(ldm_stable, ldm_stable_config)
    (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(args.real_image_path, prompts[0], offsets=(0,0,0,0), verbose=True)
    save_image(ToTensor()(image_gt), f"{exp_path}/real_image.jpg")
    save_image(ToTensor()(image_enc), f"{exp_path}/image_enc.jpg")
    print("End null text inversion")
    return x_t, uncond_embeddings


class NullInversion:

    def __init__(self, model, model_config):
        self.model = model
        self.model_config = model_config
        self.tokenizer = self.model.tokenizer
        self.model.scheduler.set_timesteps(self.model_config["num_diffusion_steps"])
        self.prompt = None
        self.context = None


    def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
        prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
        return prev_sample
    
    def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
        alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
        beta_prod_t = 1 - alpha_prod_t
        next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
        next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
        return next_sample
    
    def get_noise_pred_single(self, latents, t, context):
        noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
        return noise_pred

    def get_noise_pred(self, latents, t, is_forward=True, context=None):
        latents_input = torch.cat([latents] * 2)
        if context is None:
            context = self.context
        guidance_scale = 1 if is_forward else self.model_config["guidance_scale"]
        noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
        noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
        if is_forward:
            latents = self.next_step(noise_pred, t, latents)
        else:
            latents = self.prev_step(noise_pred, t, latents)
        return latents

    @torch.no_grad()
    def latent2image(self, latents, return_type='np'):
        latents = 1 / 0.18215 * latents.detach()
        image = self.model.vae.decode(latents)['sample']
        if return_type == 'np':
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
            image = (image * 255).astype(np.uint8)
        return image

    @torch.no_grad()
    def image2latent(self, image):
        with torch.no_grad():
            if type(image) is Image:
                image = np.array(image)
            if type(image) is torch.Tensor and image.dim() == 4:
                latents = image
            else:
                image = torch.from_numpy(image).float() / 127.5 - 1
                image = image.permute(2, 0, 1).unsqueeze(0).to(self.model.device)
                latents = self.model.vae.encode(image)['latent_dist'].mean
                latents = latents * 0.18215
        return latents

    @torch.no_grad()
    def init_prompt(self, prompt: str):
        uncond_input = self.model.tokenizer(
            [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
            return_tensors="pt"
        )
        uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
        text_input = self.model.tokenizer(
            [prompt],
            padding="max_length",
            max_length=self.model.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
        self.context = torch.cat([uncond_embeddings, text_embeddings])
        self.prompt = prompt

    @torch.no_grad()
    def ddim_loop(self, latent):
        uncond_embeddings, cond_embeddings = self.context.chunk(2)
        all_latent = [latent]
        latent = latent.clone().detach()
        for i in tqdm(range(self.model_config["num_diffusion_steps"])):
            t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
            noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)
            latent = self.next_step(noise_pred, t, latent)
            all_latent.append(latent)
        return all_latent

    @property
    def scheduler(self):
        return self.model.scheduler

    @torch.no_grad()
    def ddim_inversion(self, image):
        latent = self.image2latent(image)
        image_rec = self.latent2image(latent)
        ddim_latents = self.ddim_loop(latent)
        return image_rec, ddim_latents

    def null_optimization(self, latents, num_inner_steps, epsilon):
        uncond_embeddings, cond_embeddings = self.context.chunk(2)
        uncond_embeddings_list = []
        latent_cur = latents[-1]
        with tqdm(total=num_inner_steps * (self.model_config["num_diffusion_steps"])) as bar:
            for i in range(self.model_config["num_diffusion_steps"]):
                uncond_embeddings = uncond_embeddings.clone().detach()
                uncond_embeddings.requires_grad = True
                optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
                latent_prev = latents[len(latents) - i - 2]
                t = self.model.scheduler.timesteps[i]
                with torch.no_grad():
                    noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
                for j in range(num_inner_steps):
                    noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
                    noise_pred = noise_pred_uncond + self.model_config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
                    latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
                    loss = nnf.mse_loss(latents_prev_rec, latent_prev)
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    loss_item = loss.item()
                    bar.update()
                    if loss_item < epsilon + i * 2e-5:
                        break
                bar.update(num_inner_steps - j - 1)
                uncond_embeddings_list.append(uncond_embeddings[:1].detach())
                with torch.no_grad():
                    context = torch.cat([uncond_embeddings, cond_embeddings])
                    latent_cur = self.get_noise_pred(latent_cur, t, False, context)
        # bar.close()
        return uncond_embeddings_list
    
    def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
        self.init_prompt(prompt)
        image_gt = load_512(image_path, *offsets)
        if verbose:
            print("DDIM inversion...")
        image_rec, ddim_latents = self.ddim_inversion(image_gt)
        if verbose:
            print("Null-text optimization...")
        uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
        return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings