Spaces:
Sleeping
Sleeping
File size: 1,623 Bytes
5c090ee c37921c 5c090ee 7ed33de 5c090ee 7ed33de 5c090ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from transformers import AutoModel
import torch
def count_parameters(model_path):
try:
# Load model on CPU
model = AutoModel.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
# Count trainable parameters (accounting for weight tying)
unique_params = {}
for name, p in model.named_parameters():
if p.requires_grad:
unique_params[p.data_ptr()] = (name, p.numel())
trainable_params = sum(numel for _, numel in unique_params.values())
# Count total parameters (accounting for weight tying)
unique_params = {}
for name, p in model.named_parameters():
unique_params[p.data_ptr()] = (name, p.numel())
total_params = sum(numel for _, numel in unique_params.values())
# Format numbers with commas for readability
return f"""
Total Parameters: {total_params:,}
Trainable Parameters: {trainable_params:,}
"""
except Exception as e:
return f"Error loading model: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=count_parameters,
inputs=gr.Textbox(
label="Enter Hugging Face Model Path",
placeholder="e.g., bert-base-uncased"
),
outputs=gr.Textbox(label="Parameter Count"),
title="Hugging Face Model Parameter Counter",
description="Enter a Hugging Face model path to see its parameter count.",
examples=[
["bert-base-uncased"],
["gpt2"],
["roberta-base"]
]
)
if __name__ == "__main__":
demo.launch() |