Spaces:
Sleeping
Sleeping
File size: 5,932 Bytes
d6aca47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Crear el código completo para un espacio de Hugging Face que genera títulos
# usando Llama-3.2-1B-Instruct con interfaz Gradio y API
app_code = '''import gradio as gr
import os
from huggingface_hub import InferenceClient
# Obtener el token de HF desde los secrets
HF_TOKEN = os.environ.get("HF_TOKEN")
# Inicializar el cliente de inferencia con el modelo Llama
client = InferenceClient(
model="meta-llama/Llama-3.2-1B-Instruct",
token=HF_TOKEN
)
def generate_title(text_or_history, max_length=50):
"""
Genera un título a partir de texto o historial de conversación
Args:
text_or_history: Puede ser texto simple o una lista de mensajes
max_length: Longitud máxima del título
Returns:
El título generado
"""
try:
# Si es una lista (historial), convertirla a texto
if isinstance(text_or_history, list):
# Formatear el historial como conversación
conversation_text = "\\n".join([
f"{msg.get('role', 'user')}: {msg.get('content', '')}"
for msg in text_or_history
])
else:
conversation_text = str(text_or_history)
# Crear el prompt para generar título
prompt = f"""Based on the following conversation or text, generate a short, concise title (maximum 10 words):
{conversation_text}
Title:"""
# Generar el título usando el modelo
messages = [
{"role": "user", "content": prompt}
]
response = ""
for message in client.chat_completion(
messages=messages,
max_tokens=max_length,
temperature=0.7,
stream=True
):
token = message.choices[0].delta.content
if token:
response += token
# Limpiar el título (quitar saltos de línea extra, etc.)
title = response.strip().split("\\n")[0]
return title
except Exception as e:
return f"Error: {str(e)}"
# Crear la interfaz de Gradio
with gr.Blocks(title="Title Generator with Llama 3.2") as demo:
gr.Markdown("# 📝 AI Title Generator")
gr.Markdown("Generate concise titles from text or conversation history using Llama 3.2-1B-Instruct")
with gr.Tab("Text Input"):
text_input = gr.Textbox(
label="Enter your text",
placeholder="Paste your text or conversation here...",
lines=10
)
text_button = gr.Button("Generate Title", variant="primary")
text_output = gr.Textbox(label="Generated Title", lines=2)
text_button.click(
fn=generate_title,
inputs=[text_input],
outputs=[text_output]
)
with gr.Tab("History/List Input"):
gr.Markdown("Enter conversation history as JSON format:")
gr.Markdown('Example: `[{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi there!"}]`')
history_input = gr.Textbox(
label="Conversation History (JSON)",
placeholder='[{"role": "user", "content": "Your message here"}]',
lines=10
)
history_button = gr.Button("Generate Title", variant="primary")
history_output = gr.Textbox(label="Generated Title", lines=2)
def process_history(history_json):
try:
import json
history_list = json.loads(history_json)
return generate_title(history_list)
except json.JSONDecodeError:
return "Error: Invalid JSON format"
history_button.click(
fn=process_history,
inputs=[history_input],
outputs=[history_output]
)
gr.Markdown("---")
gr.Markdown("### API Usage")
gr.Markdown("""
You can use this API with CURL:
```bash
curl -X POST "https://YOUR-SPACE-URL/call/generate_title" \\
-H "Content-Type: application/json" \\
-d '{"data": ["Your text here"]}'
```
""")
# Lanzar la aplicación con API habilitada
if __name__ == "__main__":
demo.launch(show_api=True)
'''
# Guardar el código en un archivo
with open('app.py', 'w', encoding='utf-8') as f:
f.write(app_code)
# Crear el archivo requirements.txt
requirements = '''gradio>=4.0.0
huggingface_hub>=0.19.0
'''
with open('requirements.txt', 'w', encoding='utf-8') as f:
f.write(requirements)
# Crear el README con instrucciones
readme = '''---
title: Title Generator with Llama 3.2
emoji: 📝
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
---
# Title Generator with Llama 3.2-1B-Instruct
Generate concise titles from text or conversation history using Meta's Llama 3.2-1B-Instruct model.
## Features
- 📝 Generate titles from plain text
- 💬 Generate titles from conversation history
- 🚀 Fast inference with Llama 3.2-1B
- 🔌 RESTful API support for integration
## Setup
1. Go to your Space settings
2. Add a new secret: `HF_TOKEN` with your Hugging Face token
3. Make sure you have access to `meta-llama/Llama-3.2-1B-Instruct` (accept the gated model)
## API Usage
### CURL Example
```bash
curl -X POST "https://YOUR-SPACE-URL/call/generate_title" \\
-H "Content-Type: application/json" \\
-d '{"data": ["Your text or conversation here"]}'
```
### Python Example
```python
from gradio_client import Client
client = Client("YOUR-SPACE-URL")
result = client.predict("Your text here", api_name="/generate_title")
print(result)
```
## License
MIT License
'''
with open('README.md', 'w', encoding='utf-8') as f:
f.write(readme)
print("✅ Archivos generados exitosamente:")
print("- app.py")
print("- requirements.txt")
print("- README.md")
print("\n📦 Archivos listos para subir a Hugging Face Space")
|