File size: 17,262 Bytes
184241a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# Description: Script to run multiple experiments on runai
import re
import subprocess
import os
import argparse
import time
from prettytable import PrettyTable

class Bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKCYAN = '\033[96m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'


def pretty_table(dct):
    table = PrettyTable(['Job', 'Status'])
    for c in sorted(dct.keys()):
        table.add_row([c, dct[c]])
    print(table)


def init_parser():
    parser = argparse.ArgumentParser(prog="RUNAI SCRIPT")
    parser.add_argument('action', type=str, default=None, help='Train or Test', choices=['train', 'test', 'run'])
    parser.add_argument('--config_folder', type=str, default=None, help='Run all configs in folder')
    parser.add_argument('--config', type=str, default=None, help='Run all configs in folder')
    parser.add_argument('--name', type=str, default=None, help='prefix')
    parser.add_argument('--delete', action='store_true', help='Delete job')
    parser.add_argument('--delete_fail', action='store_true', help='Delete job')
    parser.add_argument('--delete_pending', action='store_true', help='Delete job')
    parser.add_argument('--log', action='store_true', help='Show logs')
    parser.add_argument('--delete_folder', action='store_true', help='Delete workdir folder')
    parser.add_argument('--permute_keypoints', action='store_true', help='Delete workdir folder')
    parser.add_argument('--dist', action='store_true', help='Distributed  Training')
    parser.add_argument('--find_best', action='store_true', help='Find best according to val')
    parser.add_argument('--results', action='store_true', help='Show Results')
    parser.add_argument('--no_base', action='store_true', help='Skip base models')
    parser.add_argument('--show_cmd', action='store_true', help='Show command')
    parser.add_argument('--large', action='store_true', help='Use large node')
    parser.add_argument('--eval_three', action='store_true', help='Evaluate on 3 ckpts')
    parser.add_argument('--pck', type=float, default=0.2, help='PCK threshold')
    parser.add_argument('--auc',  action='store_true', help='Evaluate AUC')
    parser.add_argument('--mpck',  action='store_true', help='Evaluate mPCK')
    parser.add_argument('--check_logs', action='store_true', help='check runai logs instead of workdir')
    parser.add_argument('--stat', action='store_true', help='check runai status')
    parser.add_argument('--CVPR24', action='store_true', help='run on CVPR24 legacy folder')
    parser.add_argument('--run_best_ckpt', action='store_true', help='run on CVPR24 legacy folder')
    parser.add_argument('--num_samples', type=int, default=32, help='PCK threshold')
    parser.add_argument('--ft_epochs', type=int, default=None, help='Num of FT epochs')
    parser.add_argument('--masking', type=float, default=None, help='Num of FT epochs')
    parser.add_argument('--masking_lamda', type=float, default=None, help='Num of FT epochs')

    return parser.parse_args()


def check_status(job_name):
    status = None
    status_command = f'runai describe job {job_name}'
    log = subprocess.run(status_command, shell=True, capture_output=True)
    log = log.stdout.decode('utf-8')
    pattern = r"Status:\s+(\w+)"
    match = re.search(pattern, log)
    if match:
        status = match.group(1)
    return status


def train_is_running(job_name, status=['Running', 'Pending', 'Failed']):
    run_status = check_status(job_name)
    for stat in status:
        if run_status == stat:
            print(f'{Bcolors.FAIL}{job_name} is {stat}{Bcolors.ENDC}')
            return True
    return False


def get_best_run(workdir_path, config, find_best):
    file_name = None
    ckpt_path = f'{workdir_path}/latest.pth'
    if find_best == 'best':
        local_path = f'work_dir_runai/{config.split(".")[0]}'
        if os.path.exists(local_path):
            file_names = [filename for filename in os.listdir(local_path) if filename.startswith("best_")]
            if len(file_names) > 0:
                file_name = file_names[0]
                ckpt_path = f'{workdir_path}/{file_name}'
    elif find_best == 'epoch_100':
        local_path = f'work_dir_runai/{config.split(".")[0]}'
        if os.path.exists(local_path):
            file_name = 'epoch_100.pth'
            if len(file_name) > 0:
                ckpt_path = f'{workdir_path}/{file_name}'
    return ckpt_path, file_name

def check_runai_logs(job_name):
    os_command = f'runai logs {job_name}'
    # status = subprocess.run(os_command, shell=True, capture_output=True)
    # status = status.decode('utf-8')
    status = subprocess.run(os_command, shell=True, capture_output=True, text=True)
    status = status.stdout
    return status


def get_run_name(config, args, run):
    run = run.replace('_', '-')
    lwr_config = config.lower()
    train_job_name = f'or-{lwr_config.split(".")[0].replace("_", "-")}'
    if len(train_job_name) > 60:
        renamed_config = name_abriviator(lwr_config)
        train_job_name = f'or-{renamed_config.split(".")[0].replace("_", "-")}'[:60]
    test_job_name = f'ev-{run}-{lwr_config.split(".")[0].replace("_", "-")}'
    if len(test_job_name) > 40:
        renamed_config = name_abriviator(lwr_config)
        test_job_name = f'ev-{run}-{renamed_config.split(".")[0].replace("_", "-")}'[:58]
    job_names = [train_job_name, test_job_name]
    for i in range(len(job_names)):
        if job_names[i].endswith('-'):
            job_names[i] = job_names[i][:-1]
        if args.name is not None:
            job_names[i] = f'{args.name}-{job_names[i]}'
    return job_names


def name_abriviator(name):
    replace_dict = {
        'encoder': 'enc',
        'decoder': 'dec',
        'look_twice': 'lt',
        'cross_category': 'cc',
        'max_hops': 'hops',
        'lamda': 'l',
        'symmetric': 'sym',
        'auxiliary': 'aux',
        'batch_size': 'bs',
    }
    for key, value in replace_dict.items():
        name = name.replace(key, value)
    return name


def check_skip(lwr_config, args):
    if args.no_base and 'base' in lwr_config:
        print(f'Skipping {Bcolors.OKCYAN}{lwr_config}{Bcolors.ENDC} - base model')
        return True
    # if not args.action == "train" and ('cross_category' in lwr_config or 'cross_cat' in lwr_config):
    #     print(
    #         f'Skipping {Bcolors.OKCYAN}{lwr_config}{Bcolors.ENDC} - test on cross_caregory, validation is the same as test')
    #     return True
    return False


def print_results(results):
    print(f'\n\n\n{Bcolors.OKGREEN}Scores{Bcolors.ENDC}')
    config_length = max(15, max(len(key) for key in results.keys()))
    config_column_width = config_length + 2
    print(f'| {"Config":<{config_column_width}} | {"Max Value":<11} | {"Latest Value":<13} | {"Best Value":<10} | {"Best Epoch":<10} |')
    print(f'|{"-" * (config_column_width + 2)}|{"-" * 13}|{"-" * 15}|{"-" * 13}|{"-" * 11}|')
    for config, val_dict in sorted(results.items()):
        config_print = config.split('/')[-1].replace('.py', '')
        other_results = val_dict.copy()
        del other_results['latest']
        best_key = max(other_results, key=other_results.get)
        latest_val = parse_result(val_dict['latest'], Bcolors.OKBLUE)
        best_val = parse_result(val_dict[best_key], Bcolors.HEADER)
        if val_dict['latest'] is None and val_dict[best_key] is None:
            max_val = f'{Bcolors.WARNING}No results{Bcolors.ENDC}'
        elif val_dict['latest'] is None:
            max_val = best_val
        elif val_dict[best_key] is None:
            max_val = latest_val
        else:
            max_val = latest_val if val_dict['latest'] > val_dict[best_key] else best_val
        # print as a table: config, max_val, latest_val, best_val
        print(f'| {config_print:<{config_column_width}} | {max_val:<20} | {latest_val:<22} | {best_val:<20} |{best_key:<10} |')

        # print(f'{config_print}: {round(max_val * 100, 2)}   '
        #       f'Latest: {latest_val}   {best_key}: {best_val}')


def parse_result(value, color):
    if value is None:
        return f'{Bcolors.WARNING}No results{Bcolors.ENDC}'
    else:
        return f'{color}{round(value * 100, 2)}{Bcolors.ENDC}'


def main():
    delay = 1
    args = init_parser()
    scores = {}
    stat = {}
    best_run = None
    if args.config_folder:
        configs = []
        # list all py files in folder and subfolders
        if '*' in args.config_folder:
            config_folder = args.config_folder.strip("'")
            parent_folder = os.path.relpath(os.path.join(config_folder, os.pardir))
            configs = [os.path.join(parent_folder, f) for f in os.listdir(parent_folder) if config_folder.split('*')[0] in os.path.join(parent_folder, f)]
        else:
            matched_folders = [args.config_folder]
            for matched_folder in matched_folders:
                for root, dirs, files in os.walk(matched_folder):
                    for file in files:
                        if file.endswith(".py"):
                            configs.append(os.path.join(root, file))
    else:
        configs = [args.config]
    print(f"{Bcolors.OKGREEN}Running {args.action} on {len(configs)} configs{Bcolors.ENDC}")
    if args.action == "test" and not args.eval_three and not args.find_best:
        runs = ['latest', 'best']
    elif args.eval_three:
        runs = ['latest', 'best', 'epoch_100']
    elif args.find_best:
        runs = ['best']
    else:
        runs = ['latest']
    for config_path in sorted(configs):
        for run in runs:
            config = config_path.split("/")[-2] + "_" + config_path.split("/")[-1].replace('_config', '')
            if args.CVPR24:
                workdir_path = f'/storage/orhir/capeformer_legacy/{config.split(".")[0]}'
            else:
                workdir_path = f'/storage/orhir/capeformer/{config.split(".")[0]}'
            local_workdir_path = f'work_dir_runai/{config.split(".")[0]}'
            lwr_config = config.lower()
            if check_skip(lwr_config, args):
                continue
            if args.action == "train" or args.action == "run":
                gpu = 4 if args.dist else 1
                resource = f' -g {gpu}'
            else:
                # resource = f' --gpu-memory 4G --cpu 2 --memory 4G'
                resource = f' -g 0.3'
            if args.large:
                resource += f' --node-pools blaufer'
            if args.stat:
                train_job_name, job_name = get_run_name(config, args, run)
                if args.action == "train" or args.action == "run":
                    job_name = train_job_name
                print(f'{"-" * 30 + Bcolors.OKCYAN + job_name + Bcolors.ENDC + "-" * 30}')
                status = check_status(job_name)
                stat[job_name] = status
                continue
            # else:
            #     resource += f' --node-pools faculty'
            if args.action == "train":
                job_name, _ = get_run_name(config, args, run)
                if args.dist:
                    py_command = (f'python -m torch.distributed.launch '
                                  f'--nproc_per_node={gpu} --master_port=29500 '
                                  f'train.py --gpus {gpu} --config {config_path} '
                                  f'--work-dir {workdir_path}  --autoscale-lr '
                                  f'--launcher pytorch')
                else:
                    py_command = (f'python train.py  '
                                  f' --config {config_path}'
                                  f' --work-dir {workdir_path}')
            elif args.action == "run":
                job_name, _ = get_run_name(config, args, run)
                if args.masking is not None:
                    masking_precent = int(args.masking * 100)
                    workdir_path = f'/storage/orhir/capeformer/CVPR25_ablation_mask_{masking_precent}'
                    job_name += f'-{masking_precent}'
                if args.masking_lamda:
                    workdir_path = f'/storage/orhir/capeformer/CVPR25_ablation_mask_lamda_{int(args.masking_lamda)}'
                    job_name += f'-lamda-{int(args.masking_lamda)}'
                py_command = (f'python run.py  '
                              f' --config {config_path}'
                              f' --work_dir {workdir_path}')
                if args.run_best_ckpt:
                    py_command += ' --best'
                    job_name += '-best'
                if args.ft_epochs:
                    py_command += f' --ft_epochs {args.ft_epochs}'
                if args.masking:
                    py_command += f' --masking_ratio {args.masking}'
                if args.masking_lamda:
                    py_command += f' --lamda_masking {args.masking_lamda}'
            else:
                train_job_name, job_name = get_run_name(config, args, run)
                ckpt_path, best_run = get_best_run(workdir_path, config, run)
                py_command = f'python test.py {config_path} {ckpt_path} --num_samples {args.num_samples}'
                if args.permute_keypoints:
                    py_command += ' --permute_keypoints'
                    job_name = (job_name + '-permute-keypoints')[:60]
            print(f'{"-" * 30 + Bcolors.OKCYAN + job_name + Bcolors.ENDC + "-" * 30}')
            if args.log:
                os_command = f'runai logs {job_name}'
            elif args.delete_fail:
                if not train_is_running(job_name, ['Failed', 'Error']):
                    print("Job not failed, skipping...")
                    continue
                os_command = f'runai delete job {job_name}'
            elif args.delete_pending:
                if not train_is_running(job_name, ['Pending']):
                    continue
                os_command = f'runai delete job {job_name}'
            elif args.delete:
                os_command = f'runai delete job {job_name}'
            elif args.results:
                if args.check_logs:
                    # First check if the job is completed
                    status = check_runai_logs(job_name)
                else:
                    if args.action == 'run':
                        log_file = os.path.join(f'work_dir_runai/{config.split(".")[0]}',
                                                'base_skeleton_bias',
                                                'testing_log.txt')
                    else:
                        log_file = os.path.join(f'work_dir_runai/{config.split(".")[0]}',
                                                'testing_log.txt')
                    if os.path.exists(log_file):
                        with open(log_file, 'r') as f:
                            status = f.read()
                        # Parse config:
                        match = re.search(f'\*\*[\s\S]*?checkpoint:\s*.*?{run}[\s\S]*?(AUC:[\s\S]*?mPCK:\s*[\d.]+)', status)
                        if match:
                            status = match.group(1)
                        else:
                            status = ''
                        delay = 0
                    else:
                        status = check_runai_logs(job_name)
                if args.auc and 'AUC' in status:
                    score = float(status.split('AUC: ')[1].split('\n')[0])
                elif args.mpck and 'mPCK' in status:
                    score = float(status.split('mPCK: ')[1].split('\n')[0])
                elif f'PCK@{args.pck}:' in status:
                    score = float(status.split(f'PCK@{args.pck}: ')[1].split('\n')[0])
                else:
                    score = None
                best_run = best_run.replace('best_PCK_', '').strip('.pth') if best_run else "No Best"
                key = 'latest' if run == 'latest' else best_run
                if config in scores:
                    scores[config][key] = score
                else:
                    scores[config] = {key: score}
                continue
            else:
                if args.action == 'test':
                    if not train_is_running(train_job_name, ['Completed', 'Succeeded']):
                        print('Train not completed')
                        continue
                os_command = (f'runai submit --pvc=storage:/storage -i orhir/capeformer '
                              f' --name {job_name} {resource} --large-shm '
                              f' --command -- {py_command}')
            # print(os_command)
            if args.show_cmd:
                print(f'{Bcolors.OKGREEN}{os_command}{Bcolors.ENDC}')
            subprocess.run(os_command, shell=True)
            if args.delete_folder:
                if os.path.exists(local_workdir_path):
                    subprocess.run(f'rm -rf {local_workdir_path}', shell=True)
                else:
                    subprocess.run(f'echo {Bcolors.WARNING}No workdir folder to delete{Bcolors.ENDC}', shell=True)
            # print(f'\n{"-" * 150}')
            time.sleep(delay)
    if args.results:
        print_results(scores)
    if args.stat:
        pretty_table(stat)

if __name__ == "__main__":
    main()