Spaces:
Configuration error
Configuration error
| import os | |
| import requests | |
| import base64 | |
| from typing import Dict, Any, List | |
| from langchain.docstore.document import Document | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.retrievers import BM25Retriever | |
| from smolagents import CodeAgent, OpenAIServerModel, tool, Tool | |
| from smolagents.vision_web_browser import initialize_driver, save_screenshot, helium_instructions | |
| from smolagents.agents import ActionStep | |
| from selenium import webdriver | |
| from selenium.webdriver.common.by import By | |
| from selenium.webdriver.common.keys import Keys | |
| import helium | |
| from PIL import Image | |
| from io import BytesIO | |
| from time import sleep | |
| from smolagents import PythonInterpreterTool, SpeechToTextTool | |
| # Langfuse observability imports | |
| from opentelemetry.sdk.trace import TracerProvider | |
| from openinference.instrumentation.smolagents import SmolagentsInstrumentor | |
| from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter | |
| from opentelemetry.sdk.trace.export import SimpleSpanProcessor | |
| from opentelemetry import trace | |
| from opentelemetry.trace import format_trace_id | |
| from langfuse import Langfuse | |
| class BM25RetrieverTool(Tool): | |
| """ | |
| BM25 retriever tool for document search when text documents are available | |
| """ | |
| name = "bm25_retriever" | |
| description = "Uses BM25 search to retrieve relevant parts of uploaded documents. Use this when the question references an attached file or document." | |
| inputs = { | |
| "query": { | |
| "type": "string", | |
| "description": "The search query to find relevant document sections.", | |
| } | |
| } | |
| output_type = "string" | |
| def __init__(self, docs=None, **kwargs): | |
| super().__init__(**kwargs) | |
| self.docs = docs or [] | |
| self.retriever = None | |
| if self.docs: | |
| self.retriever = BM25Retriever.from_documents(self.docs, k=5) | |
| def forward(self, query: str) -> str: | |
| if not self.retriever: | |
| return "No documents loaded for retrieval." | |
| assert isinstance(query, str), "Your search query must be a string" | |
| docs = self.retriever.invoke(query) | |
| return "\nRetrieved documents:\n" + "".join([ | |
| f"\n\n===== Document {str(i)} =====\n" + doc.page_content | |
| for i, doc in enumerate(docs) | |
| ]) | |
| def search_item_ctrl_f(text: str, nth_result: int = 1) -> str: | |
| """Search for text on the current page via Ctrl + F and jump to the nth occurrence. | |
| Args: | |
| text: The text string to search for on the webpage | |
| nth_result: Which occurrence to jump to (default is 1 for first occurrence) | |
| Returns: | |
| str: Result of the search operation with match count and navigation status | |
| """ | |
| try: | |
| driver = helium.get_driver() | |
| elements = driver.find_elements(By.XPATH, f"//*[contains(text(), '{text}')]") | |
| if nth_result > len(elements): | |
| return f"Match n°{nth_result} not found (only {len(elements)} matches found)" | |
| result = f"Found {len(elements)} matches for '{text}'." | |
| elem = elements[nth_result - 1] | |
| driver.execute_script("arguments[0].scrollIntoView(true);", elem) | |
| result += f"Focused on element {nth_result} of {len(elements)}" | |
| return result | |
| except Exception as e: | |
| return f"Error searching for text: {e}" | |
| def go_back() -> str: | |
| """Navigate back to the previous page in browser history. | |
| Returns: | |
| str: Confirmation message or error description | |
| """ | |
| try: | |
| driver = helium.get_driver() | |
| driver.back() | |
| return "Navigated back to previous page" | |
| except Exception as e: | |
| return f"Error going back: {e}" | |
| def close_popups() -> str: | |
| """Close any visible modal or pop-up on the page by sending ESC key. | |
| Returns: | |
| str: Confirmation message or error description | |
| """ | |
| try: | |
| driver = helium.get_driver() | |
| webdriver.ActionChains(driver).send_keys(Keys.ESCAPE).perform() | |
| return "Attempted to close popups" | |
| except Exception as e: | |
| return f"Error closing popups: {e}" | |
| def scroll_page(direction: str = "down", amount: int = 3) -> str: | |
| """Scroll the webpage in the specified direction. | |
| Args: | |
| direction: Direction to scroll, either 'up' or 'down' | |
| amount: Number of scroll actions to perform | |
| Returns: | |
| str: Confirmation message or error description | |
| """ | |
| try: | |
| driver = helium.get_driver() | |
| for _ in range(amount): | |
| if direction.lower() == "down": | |
| driver.execute_script("window.scrollBy(0, 300);") | |
| elif direction.lower() == "up": | |
| driver.execute_script("window.scrollBy(0, -300);") | |
| sleep(0.5) | |
| return f"Scrolled {direction} {amount} times" | |
| except Exception as e: | |
| return f"Error scrolling: {e}" | |
| def get_page_text() -> str: | |
| """Extract all visible text from the current webpage. | |
| Returns: | |
| str: The visible text content of the page | |
| """ | |
| try: | |
| driver = helium.get_driver() | |
| text = driver.find_element(By.TAG_NAME, "body").text | |
| return f"Page text (first 2000 chars): {text[:2000]}" | |
| except Exception as e: | |
| return f"Error getting page text: {e}" | |
| def save_screenshot_callback(memory_step: ActionStep, agent: CodeAgent) -> None: | |
| """Save screenshots for web browser automation""" | |
| try: | |
| sleep(1.0) | |
| driver = helium.get_driver() | |
| if driver is not None: | |
| # Clean up old screenshots | |
| for previous_memory_step in agent.memory.steps: | |
| if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= memory_step.step_number - 2: | |
| previous_memory_step.observations_images = None | |
| png_bytes = driver.get_screenshot_as_png() | |
| image = Image.open(BytesIO(png_bytes)) | |
| memory_step.observations_images = [image.copy()] | |
| # Update observations with current URL | |
| url_info = f"Current url: {driver.current_url}" | |
| memory_step.observations = ( | |
| url_info if memory_step.observations is None | |
| else memory_step.observations + "\n" + url_info | |
| ) | |
| except Exception as e: | |
| print(f"Error in screenshot callback: {e}") | |
| class GAIAAgent: | |
| """ | |
| GAIA agent using smolagents with Gemini 2.0 Flash and Langfuse observability | |
| """ | |
| def __init__(self, user_id: str = None, session_id: str = None): | |
| """Initialize the agent with Gemini 2.0 Flash, tools, and Langfuse observability""" | |
| # Get API keys | |
| gemini_api_key = os.environ.get("GOOGLE_API_KEY") | |
| if not gemini_api_key: | |
| raise ValueError("GOOGLE_API_KEY environment variable not found") | |
| # Initialize Langfuse observability | |
| self._setup_langfuse_observability() | |
| # Initialize Gemini 2.0 Flash model | |
| self.model = OpenAIServerModel( | |
| model_id="gemini-2.0-flash", | |
| api_base="https://generativelanguage.googleapis.com/v1beta/openai/", | |
| api_key=gemini_api_key, | |
| ) | |
| # Store user and session IDs for tracking | |
| self.user_id = user_id or "gaia-user" | |
| self.session_id = session_id or "gaia-session" | |
| # GAIA system prompt from the leaderboard | |
| self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts and reasoning process clearly. You should use the available tools to gather information and solve problems step by step. | |
| When using web browser automation: | |
| - Use helium commands like go_to(), click(), scroll_down() | |
| - Take screenshots to see what's happening | |
| - Handle popups and forms appropriately | |
| - Be patient with page loading | |
| For document retrieval: | |
| - Use the BM25 retriever when there are text documents attached | |
| - Search with relevant keywords from the question | |
| Your final answer should be as few words as possible, a number, or a comma-separated list. Don't use articles, abbreviations, or units unless specified.""" | |
| # Initialize retriever tool (will be updated when documents are loaded) | |
| self.retriever_tool = BM25RetrieverTool() | |
| # Initialize web driver for browser automation | |
| self.driver = None | |
| # Create the agent | |
| self.agent = None | |
| self._create_agent() | |
| # Initialize Langfuse client | |
| self.langfuse = Langfuse() | |
| def _setup_langfuse_observability(self): | |
| """Set up Langfuse observability with OpenTelemetry""" | |
| # Get Langfuse keys from environment variables | |
| langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY") | |
| langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY") | |
| if not langfuse_public_key or not langfuse_secret_key: | |
| print("Warning: LANGFUSE_PUBLIC_KEY or LANGFUSE_SECRET_KEY not found. Observability will be limited.") | |
| return | |
| # Set up Langfuse environment variables | |
| os.environ["LANGFUSE_HOST"] = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") | |
| langfuse_auth = base64.b64encode( | |
| f"{langfuse_public_key}:{langfuse_secret_key}".encode() | |
| ).decode() | |
| os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel" | |
| os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {langfuse_auth}" | |
| # Create a TracerProvider for OpenTelemetry | |
| trace_provider = TracerProvider() | |
| # Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces | |
| trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) | |
| # Set the global default tracer provider | |
| trace.set_tracer_provider(trace_provider) | |
| self.tracer = trace.get_tracer(__name__) | |
| # Instrument smolagents with the configured provider | |
| SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) | |
| def _create_agent(self): | |
| """Create the CodeAgent with tools""" | |
| base_tools = [ | |
| self.retriever_tool, | |
| search_item_ctrl_f, | |
| go_back, | |
| close_popups, | |
| scroll_page, | |
| get_page_text | |
| ] | |
| self.agent = CodeAgent( | |
| tools=base_tools + [PythonInterpreterTool(), SpeechToTextTool()], | |
| model=self.model, | |
| add_base_tools=False, | |
| planning_interval=2, | |
| additional_authorized_imports=["helium", "requests", "BeautifulSoup", "json"], | |
| step_callbacks=[save_screenshot_callback] if self.driver else [], | |
| max_steps=10, | |
| description=self.system_prompt, | |
| verbosity_level=2, | |
| ) | |
| def initialize_browser(self): | |
| """Initialize browser for web automation tasks""" | |
| try: | |
| chrome_options = webdriver.ChromeOptions() | |
| chrome_options.add_argument("--force-device-scale-factor=1") | |
| chrome_options.add_argument("--window-size=1000,1350") | |
| chrome_options.add_argument("--disable-pdf-viewer") | |
| chrome_options.add_argument("--window-position=0,0") | |
| chrome_options.add_argument("--no-sandbox") | |
| chrome_options.add_argument("--disable-dev-shm-usage") | |
| self.driver = helium.start_chrome(headless=False, options=chrome_options) | |
| # Recreate agent with browser tools | |
| self._create_agent() | |
| # Import helium for the agent | |
| self.agent.python_executor("from helium import *") | |
| return True | |
| except Exception as e: | |
| print(f"Failed to initialize browser: {e}") | |
| return False | |
| def load_documents_from_file(self, file_path: str): | |
| """Load and process documents from a file for BM25 retrieval""" | |
| try: | |
| # Read file content | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| # Split into chunks | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| separators=["\n\n", "\n", ".", " ", ""] | |
| ) | |
| # Create documents | |
| chunks = text_splitter.split_text(content) | |
| docs = [Document(page_content=chunk, metadata={"source": file_path}) | |
| for chunk in chunks] | |
| # Update retriever tool | |
| self.retriever_tool = BM25RetrieverTool(docs) | |
| # Recreate agent with updated retriever | |
| self._create_agent() | |
| print(f"Loaded {len(docs)} document chunks from {file_path}") | |
| return True | |
| except Exception as e: | |
| print(f"Error loading documents from {file_path}: {e}") | |
| return False | |
| def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: | |
| """Download file associated with GAIA task_id""" | |
| try: | |
| response = requests.get(f"{api_url}/files/{task_id}", timeout=30) | |
| response.raise_for_status() | |
| filename = f"task_{task_id}_file.txt" | |
| with open(filename, 'wb') as f: | |
| f.write(response.content) | |
| return filename | |
| except Exception as e: | |
| print(f"Failed to download file for task {task_id}: {e}") | |
| return None | |
| def solve_gaia_question(self, question_data: Dict[str, Any], tags: List[str] = None) -> str: | |
| """ | |
| Solve a GAIA question with full Langfuse observability | |
| """ | |
| question = question_data.get("Question", "") | |
| task_id = question_data.get("task_id", "") | |
| # Prepare tags for observability | |
| trace_tags = ["gaia-agent", "question-solving"] | |
| if tags: | |
| trace_tags.extend(tags) | |
| if task_id: | |
| trace_tags.append(f"task-{task_id}") | |
| # Start Langfuse trace with OpenTelemetry | |
| with self.tracer.start_as_current_span("GAIA-Question-Solving") as span: | |
| try: | |
| # Set span attributes for tracking | |
| span.set_attribute("langfuse.user.id", self.user_id) | |
| span.set_attribute("langfuse.session.id", self.session_id) | |
| span.set_attribute("langfuse.tags", trace_tags) | |
| span.set_attribute("gaia.task_id", task_id) | |
| span.set_attribute("gaia.question_length", len(question)) | |
| # Get trace ID for Langfuse linking | |
| current_span = trace.get_current_span() | |
| span_context = current_span.get_span_context() | |
| trace_id = span_context.trace_id | |
| formatted_trace_id = format_trace_id(trace_id) | |
| # Create Langfuse trace | |
| langfuse_trace = self.langfuse.trace( | |
| id=formatted_trace_id, | |
| name="GAIA Question Solving", | |
| input={"question": question, "task_id": task_id}, | |
| user_id=self.user_id, | |
| session_id=self.session_id, | |
| tags=trace_tags, | |
| metadata={ | |
| "model": self.model.model_id, | |
| "question_length": len(question), | |
| "has_file": bool(task_id) | |
| } | |
| ) | |
| # Download and load file if task_id provided | |
| file_loaded = False | |
| if task_id: | |
| file_path = self.download_gaia_file(task_id) | |
| if file_path: | |
| file_loaded = self.load_documents_from_file(file_path) | |
| span.set_attribute("gaia.file_loaded", file_loaded) | |
| print(f"Loaded file for task {task_id}") | |
| # Check if this requires web browsing | |
| web_indicators = ["navigate", "browser", "website", "webpage", "url", "click", "search on"] | |
| needs_browser = any(indicator in question.lower() for indicator in web_indicators) | |
| span.set_attribute("gaia.needs_browser", needs_browser) | |
| if needs_browser and not self.driver: | |
| print("Initializing browser for web automation...") | |
| browser_initialized = self.initialize_browser() | |
| span.set_attribute("gaia.browser_initialized", browser_initialized) | |
| # Prepare the prompt | |
| prompt = f""" | |
| Question: {question} | |
| {f'Task ID: {task_id}' if task_id else ''} | |
| {f'File loaded: Yes' if file_loaded else 'File loaded: No'} | |
| Solve this step by step. Use the available tools to gather information and provide a precise answer. | |
| """ | |
| if needs_browser: | |
| prompt += "\n" + helium_instructions | |
| print("=== AGENT REASONING ===") | |
| result = self.agent.run(prompt) | |
| print("=== END REASONING ===") | |
| # Update Langfuse trace with result | |
| langfuse_trace.update( | |
| output={"answer": str(result)}, | |
| end_time=None # Will be set automatically | |
| ) | |
| # Add success attributes | |
| span.set_attribute("gaia.success", True) | |
| span.set_attribute("gaia.answer_length", len(str(result))) | |
| # Flush Langfuse data | |
| self.langfuse.flush() | |
| return str(result) | |
| except Exception as e: | |
| error_msg = f"Error processing question: {str(e)}" | |
| print(error_msg) | |
| # Log error to span and Langfuse | |
| span.set_attribute("gaia.success", False) | |
| span.set_attribute("gaia.error", str(e)) | |
| if 'langfuse_trace' in locals(): | |
| langfuse_trace.update( | |
| output={"error": error_msg}, | |
| level="ERROR" | |
| ) | |
| self.langfuse.flush() | |
| return error_msg | |
| finally: | |
| # Clean up browser if initialized | |
| if self.driver: | |
| try: | |
| helium.kill_browser() | |
| except: | |
| pass | |
| def evaluate_answer(self, question: str, answer: str, expected_answer: str = None) -> Dict[str, Any]: | |
| """ | |
| Evaluate the agent's answer using LLM-as-a-Judge and optionally compare with expected answer | |
| """ | |
| evaluation_prompt = f""" | |
| Please evaluate the following answer to a question on a scale of 1-5: | |
| Question: {question} | |
| Answer: {answer} | |
| {f'Expected Answer: {expected_answer}' if expected_answer else ''} | |
| Rate the answer on: | |
| 1. Accuracy (1-5) | |
| 2. Completeness (1-5) | |
| 3. Clarity (1-5) | |
| Provide your rating as JSON: {{"accuracy": X, "completeness": Y, "clarity": Z, "overall": W, "reasoning": "explanation"}} | |
| """ | |
| try: | |
| # Use the same model to evaluate | |
| evaluation_result = self.agent.run(evaluation_prompt) | |
| # Try to parse JSON response | |
| import json | |
| try: | |
| scores = json.loads(evaluation_result) | |
| return scores | |
| except: | |
| # Fallback if JSON parsing fails | |
| return { | |
| "accuracy": 3, | |
| "completeness": 3, | |
| "clarity": 3, | |
| "overall": 3, | |
| "reasoning": "Could not parse evaluation response", | |
| "raw_evaluation": evaluation_result | |
| } | |
| except Exception as e: | |
| return { | |
| "accuracy": 1, | |
| "completeness": 1, | |
| "clarity": 1, | |
| "overall": 1, | |
| "reasoning": f"Evaluation failed: {str(e)}" | |
| } | |
| def add_user_feedback(self, trace_id: str, feedback_score: int, comment: str = None): | |
| """ | |
| Add user feedback to a specific trace | |
| Args: | |
| trace_id: The trace ID to add feedback to | |
| feedback_score: Score from 0-5 (0=very bad, 5=excellent) | |
| comment: Optional comment from user | |
| """ | |
| try: | |
| self.langfuse.score( | |
| trace_id=trace_id, | |
| name="user-feedback", | |
| value=feedback_score, | |
| comment=comment | |
| ) | |
| self.langfuse.flush() | |
| print(f"User feedback added: {feedback_score}/5") | |
| except Exception as e: | |
| print(f"Error adding user feedback: {e}") | |
| # Example usage with observability | |
| if __name__ == "__main__": | |
| # Set up environment variables (you need to set these) | |
| # os.environ["GOOGLE_API_KEY"] = "your-gemini-api-key" | |
| # os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..." | |
| # os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..." | |
| # Test the agent with observability | |
| agent = GAIAAgent( | |
| user_id="test-user-123", | |
| session_id="test-session-456" | |
| ) | |
| # Example question | |
| question_data = { | |
| "Question": "How many studio albums Mercedes Sosa has published between 2000-2009?", | |
| "task_id": "" | |
| } | |
| # Solve with full observability | |
| answer = agent.solve_gaia_question( | |
| question_data, | |
| tags=["music-question", "discography"] | |
| ) | |
| print(f"Answer: {answer}") | |
| # Evaluate the answer | |
| evaluation = agent.evaluate_answer( | |
| question_data["Question"], | |
| answer | |
| ) | |
| print(f"Evaluation: {evaluation}") |