Spaces:
Configuration error
Configuration error
oremaz
commited on
Commit
·
4c20a23
1
Parent(s):
6e0b138
Update agent2.py
Browse files
agent2.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import requests
|
|
|
|
| 3 |
from typing import Dict, Any, List
|
| 4 |
from langchain.docstore.document import Document
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
@@ -16,6 +17,16 @@ from io import BytesIO
|
|
| 16 |
from time import sleep
|
| 17 |
from smolagents import PythonInterpreterTool, SpeechToTextTool
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
class BM25RetrieverTool(Tool):
|
| 20 |
"""
|
| 21 |
BM25 retriever tool for document search when text documents are available
|
|
@@ -171,17 +182,20 @@ def save_screenshot_callback(memory_step: ActionStep, agent: CodeAgent) -> None:
|
|
| 171 |
|
| 172 |
class GAIAAgent:
|
| 173 |
"""
|
| 174 |
-
|
| 175 |
"""
|
| 176 |
|
| 177 |
-
def __init__(self):
|
| 178 |
-
"""Initialize the agent with Gemini 2.0 Flash and
|
| 179 |
|
| 180 |
-
# Get
|
| 181 |
gemini_api_key = os.environ.get("GOOGLE_API_KEY")
|
| 182 |
if not gemini_api_key:
|
| 183 |
raise ValueError("GOOGLE_API_KEY environment variable not found")
|
| 184 |
|
|
|
|
|
|
|
|
|
|
| 185 |
# Initialize Gemini 2.0 Flash model
|
| 186 |
self.model = OpenAIServerModel(
|
| 187 |
model_id="gemini-2.0-flash",
|
|
@@ -189,6 +203,10 @@ class GAIAAgent:
|
|
| 189 |
api_key=gemini_api_key,
|
| 190 |
)
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# GAIA system prompt from the leaderboard
|
| 193 |
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts and reasoning process clearly. You should use the available tools to gather information and solve problems step by step.
|
| 194 |
|
|
@@ -214,6 +232,42 @@ Your final answer should be as few words as possible, a number, or a comma-separ
|
|
| 214 |
self.agent = None
|
| 215 |
self._create_agent()
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
def _create_agent(self):
|
| 218 |
"""Create the CodeAgent with tools"""
|
| 219 |
base_tools = [
|
|
@@ -228,8 +282,8 @@ Your final answer should be as few words as possible, a number, or a comma-separ
|
|
| 228 |
self.agent = CodeAgent(
|
| 229 |
tools=base_tools + [PythonInterpreterTool(), SpeechToTextTool()],
|
| 230 |
model=self.model,
|
| 231 |
-
add_base_tools=False,
|
| 232 |
-
planning_interval=2,
|
| 233 |
additional_authorized_imports=["helium", "requests", "BeautifulSoup", "json"],
|
| 234 |
step_callbacks=[save_screenshot_callback] if self.driver else [],
|
| 235 |
max_steps=10,
|
|
@@ -308,70 +362,225 @@ Your final answer should be as few words as possible, a number, or a comma-separ
|
|
| 308 |
print(f"Failed to download file for task {task_id}: {e}")
|
| 309 |
return None
|
| 310 |
|
| 311 |
-
def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
|
| 312 |
"""
|
| 313 |
-
Solve a GAIA question
|
| 314 |
"""
|
| 315 |
question = question_data.get("Question", "")
|
| 316 |
task_id = question_data.get("task_id", "")
|
| 317 |
-
|
| 318 |
-
#
|
|
|
|
|
|
|
|
|
|
| 319 |
if task_id:
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
Question: {question}
|
| 336 |
{f'Task ID: {task_id}' if task_id else ''}
|
| 337 |
-
{f'File loaded: Yes' if
|
| 338 |
|
| 339 |
Solve this step by step. Use the available tools to gather information and provide a precise answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
|
|
|
| 344 |
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
|
| 350 |
-
|
|
|
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
except Exception as e:
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
# Clean up browser if initialized
|
| 358 |
-
if self.driver:
|
| 359 |
-
try:
|
| 360 |
-
helium.kill_browser()
|
| 361 |
-
except:
|
| 362 |
-
pass
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
# Example usage
|
| 366 |
if __name__ == "__main__":
|
| 367 |
-
#
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
# Example question
|
| 371 |
question_data = {
|
| 372 |
-
"Question": "How many studio albums Mercedes Sosa has published between 2000-2009
|
| 373 |
"task_id": ""
|
| 374 |
}
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
+
import base64
|
| 4 |
from typing import Dict, Any, List
|
| 5 |
from langchain.docstore.document import Document
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 17 |
from time import sleep
|
| 18 |
from smolagents import PythonInterpreterTool, SpeechToTextTool
|
| 19 |
|
| 20 |
+
# Langfuse observability imports
|
| 21 |
+
from opentelemetry.sdk.trace import TracerProvider
|
| 22 |
+
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
| 23 |
+
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
| 24 |
+
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
|
| 25 |
+
from opentelemetry import trace
|
| 26 |
+
from opentelemetry.trace import format_trace_id
|
| 27 |
+
from langfuse import Langfuse
|
| 28 |
+
|
| 29 |
+
|
| 30 |
class BM25RetrieverTool(Tool):
|
| 31 |
"""
|
| 32 |
BM25 retriever tool for document search when text documents are available
|
|
|
|
| 182 |
|
| 183 |
class GAIAAgent:
|
| 184 |
"""
|
| 185 |
+
GAIA agent using smolagents with Gemini 2.0 Flash and Langfuse observability
|
| 186 |
"""
|
| 187 |
|
| 188 |
+
def __init__(self, user_id: str = None, session_id: str = None):
|
| 189 |
+
"""Initialize the agent with Gemini 2.0 Flash, tools, and Langfuse observability"""
|
| 190 |
|
| 191 |
+
# Get API keys
|
| 192 |
gemini_api_key = os.environ.get("GOOGLE_API_KEY")
|
| 193 |
if not gemini_api_key:
|
| 194 |
raise ValueError("GOOGLE_API_KEY environment variable not found")
|
| 195 |
|
| 196 |
+
# Initialize Langfuse observability
|
| 197 |
+
self._setup_langfuse_observability()
|
| 198 |
+
|
| 199 |
# Initialize Gemini 2.0 Flash model
|
| 200 |
self.model = OpenAIServerModel(
|
| 201 |
model_id="gemini-2.0-flash",
|
|
|
|
| 203 |
api_key=gemini_api_key,
|
| 204 |
)
|
| 205 |
|
| 206 |
+
# Store user and session IDs for tracking
|
| 207 |
+
self.user_id = user_id or "gaia-user"
|
| 208 |
+
self.session_id = session_id or "gaia-session"
|
| 209 |
+
|
| 210 |
# GAIA system prompt from the leaderboard
|
| 211 |
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts and reasoning process clearly. You should use the available tools to gather information and solve problems step by step.
|
| 212 |
|
|
|
|
| 232 |
self.agent = None
|
| 233 |
self._create_agent()
|
| 234 |
|
| 235 |
+
# Initialize Langfuse client
|
| 236 |
+
self.langfuse = Langfuse()
|
| 237 |
+
|
| 238 |
+
def _setup_langfuse_observability(self):
|
| 239 |
+
"""Set up Langfuse observability with OpenTelemetry"""
|
| 240 |
+
# Get Langfuse keys from environment variables
|
| 241 |
+
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
|
| 242 |
+
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
|
| 243 |
+
|
| 244 |
+
if not langfuse_public_key or not langfuse_secret_key:
|
| 245 |
+
print("Warning: LANGFUSE_PUBLIC_KEY or LANGFUSE_SECRET_KEY not found. Observability will be limited.")
|
| 246 |
+
return
|
| 247 |
+
|
| 248 |
+
# Set up Langfuse environment variables
|
| 249 |
+
os.environ["LANGFUSE_HOST"] = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com")
|
| 250 |
+
|
| 251 |
+
langfuse_auth = base64.b64encode(
|
| 252 |
+
f"{langfuse_public_key}:{langfuse_secret_key}".encode()
|
| 253 |
+
).decode()
|
| 254 |
+
|
| 255 |
+
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel"
|
| 256 |
+
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {langfuse_auth}"
|
| 257 |
+
|
| 258 |
+
# Create a TracerProvider for OpenTelemetry
|
| 259 |
+
trace_provider = TracerProvider()
|
| 260 |
+
|
| 261 |
+
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
|
| 262 |
+
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
|
| 263 |
+
|
| 264 |
+
# Set the global default tracer provider
|
| 265 |
+
trace.set_tracer_provider(trace_provider)
|
| 266 |
+
self.tracer = trace.get_tracer(__name__)
|
| 267 |
+
|
| 268 |
+
# Instrument smolagents with the configured provider
|
| 269 |
+
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
|
| 270 |
+
|
| 271 |
def _create_agent(self):
|
| 272 |
"""Create the CodeAgent with tools"""
|
| 273 |
base_tools = [
|
|
|
|
| 282 |
self.agent = CodeAgent(
|
| 283 |
tools=base_tools + [PythonInterpreterTool(), SpeechToTextTool()],
|
| 284 |
model=self.model,
|
| 285 |
+
add_base_tools=False,
|
| 286 |
+
planning_interval=2,
|
| 287 |
additional_authorized_imports=["helium", "requests", "BeautifulSoup", "json"],
|
| 288 |
step_callbacks=[save_screenshot_callback] if self.driver else [],
|
| 289 |
max_steps=10,
|
|
|
|
| 362 |
print(f"Failed to download file for task {task_id}: {e}")
|
| 363 |
return None
|
| 364 |
|
| 365 |
+
def solve_gaia_question(self, question_data: Dict[str, Any], tags: List[str] = None) -> str:
|
| 366 |
"""
|
| 367 |
+
Solve a GAIA question with full Langfuse observability
|
| 368 |
"""
|
| 369 |
question = question_data.get("Question", "")
|
| 370 |
task_id = question_data.get("task_id", "")
|
| 371 |
+
|
| 372 |
+
# Prepare tags for observability
|
| 373 |
+
trace_tags = ["gaia-agent", "question-solving"]
|
| 374 |
+
if tags:
|
| 375 |
+
trace_tags.extend(tags)
|
| 376 |
if task_id:
|
| 377 |
+
trace_tags.append(f"task-{task_id}")
|
| 378 |
+
|
| 379 |
+
# Start Langfuse trace with OpenTelemetry
|
| 380 |
+
with self.tracer.start_as_current_span("GAIA-Question-Solving") as span:
|
| 381 |
+
try:
|
| 382 |
+
# Set span attributes for tracking
|
| 383 |
+
span.set_attribute("langfuse.user.id", self.user_id)
|
| 384 |
+
span.set_attribute("langfuse.session.id", self.session_id)
|
| 385 |
+
span.set_attribute("langfuse.tags", trace_tags)
|
| 386 |
+
span.set_attribute("gaia.task_id", task_id)
|
| 387 |
+
span.set_attribute("gaia.question_length", len(question))
|
| 388 |
+
|
| 389 |
+
# Get trace ID for Langfuse linking
|
| 390 |
+
current_span = trace.get_current_span()
|
| 391 |
+
span_context = current_span.get_span_context()
|
| 392 |
+
trace_id = span_context.trace_id
|
| 393 |
+
formatted_trace_id = format_trace_id(trace_id)
|
| 394 |
+
|
| 395 |
+
# Create Langfuse trace
|
| 396 |
+
langfuse_trace = self.langfuse.trace(
|
| 397 |
+
id=formatted_trace_id,
|
| 398 |
+
name="GAIA Question Solving",
|
| 399 |
+
input={"question": question, "task_id": task_id},
|
| 400 |
+
user_id=self.user_id,
|
| 401 |
+
session_id=self.session_id,
|
| 402 |
+
tags=trace_tags,
|
| 403 |
+
metadata={
|
| 404 |
+
"model": self.model.model_id,
|
| 405 |
+
"question_length": len(question),
|
| 406 |
+
"has_file": bool(task_id)
|
| 407 |
+
}
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# Download and load file if task_id provided
|
| 411 |
+
file_loaded = False
|
| 412 |
+
if task_id:
|
| 413 |
+
file_path = self.download_gaia_file(task_id)
|
| 414 |
+
if file_path:
|
| 415 |
+
file_loaded = self.load_documents_from_file(file_path)
|
| 416 |
+
span.set_attribute("gaia.file_loaded", file_loaded)
|
| 417 |
+
print(f"Loaded file for task {task_id}")
|
| 418 |
+
|
| 419 |
+
# Check if this requires web browsing
|
| 420 |
+
web_indicators = ["navigate", "browser", "website", "webpage", "url", "click", "search on"]
|
| 421 |
+
needs_browser = any(indicator in question.lower() for indicator in web_indicators)
|
| 422 |
+
span.set_attribute("gaia.needs_browser", needs_browser)
|
| 423 |
+
|
| 424 |
+
if needs_browser and not self.driver:
|
| 425 |
+
print("Initializing browser for web automation...")
|
| 426 |
+
browser_initialized = self.initialize_browser()
|
| 427 |
+
span.set_attribute("gaia.browser_initialized", browser_initialized)
|
| 428 |
+
|
| 429 |
+
# Prepare the prompt
|
| 430 |
+
prompt = f"""
|
| 431 |
Question: {question}
|
| 432 |
{f'Task ID: {task_id}' if task_id else ''}
|
| 433 |
+
{f'File loaded: Yes' if file_loaded else 'File loaded: No'}
|
| 434 |
|
| 435 |
Solve this step by step. Use the available tools to gather information and provide a precise answer.
|
| 436 |
+
"""
|
| 437 |
+
|
| 438 |
+
if needs_browser:
|
| 439 |
+
prompt += "\n" + helium_instructions
|
| 440 |
+
|
| 441 |
+
print("=== AGENT REASONING ===")
|
| 442 |
+
result = self.agent.run(prompt)
|
| 443 |
+
print("=== END REASONING ===")
|
| 444 |
+
|
| 445 |
+
# Update Langfuse trace with result
|
| 446 |
+
langfuse_trace.update(
|
| 447 |
+
output={"answer": str(result)},
|
| 448 |
+
end_time=None # Will be set automatically
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Add success attributes
|
| 452 |
+
span.set_attribute("gaia.success", True)
|
| 453 |
+
span.set_attribute("gaia.answer_length", len(str(result)))
|
| 454 |
+
|
| 455 |
+
# Flush Langfuse data
|
| 456 |
+
self.langfuse.flush()
|
| 457 |
+
|
| 458 |
+
return str(result)
|
| 459 |
+
|
| 460 |
+
except Exception as e:
|
| 461 |
+
error_msg = f"Error processing question: {str(e)}"
|
| 462 |
+
print(error_msg)
|
| 463 |
+
|
| 464 |
+
# Log error to span and Langfuse
|
| 465 |
+
span.set_attribute("gaia.success", False)
|
| 466 |
+
span.set_attribute("gaia.error", str(e))
|
| 467 |
+
|
| 468 |
+
if 'langfuse_trace' in locals():
|
| 469 |
+
langfuse_trace.update(
|
| 470 |
+
output={"error": error_msg},
|
| 471 |
+
level="ERROR"
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
self.langfuse.flush()
|
| 475 |
+
return error_msg
|
| 476 |
+
|
| 477 |
+
finally:
|
| 478 |
+
# Clean up browser if initialized
|
| 479 |
+
if self.driver:
|
| 480 |
+
try:
|
| 481 |
+
helium.kill_browser()
|
| 482 |
+
except:
|
| 483 |
+
pass
|
| 484 |
+
|
| 485 |
+
def evaluate_answer(self, question: str, answer: str, expected_answer: str = None) -> Dict[str, Any]:
|
| 486 |
"""
|
| 487 |
+
Evaluate the agent's answer using LLM-as-a-Judge and optionally compare with expected answer
|
| 488 |
+
"""
|
| 489 |
+
evaluation_prompt = f"""
|
| 490 |
+
Please evaluate the following answer to a question on a scale of 1-5:
|
| 491 |
|
| 492 |
+
Question: {question}
|
| 493 |
+
Answer: {answer}
|
| 494 |
+
{f'Expected Answer: {expected_answer}' if expected_answer else ''}
|
| 495 |
|
| 496 |
+
Rate the answer on:
|
| 497 |
+
1. Accuracy (1-5)
|
| 498 |
+
2. Completeness (1-5)
|
| 499 |
+
3. Clarity (1-5)
|
| 500 |
|
| 501 |
+
Provide your rating as JSON: {{"accuracy": X, "completeness": Y, "clarity": Z, "overall": W, "reasoning": "explanation"}}
|
| 502 |
+
"""
|
| 503 |
|
| 504 |
+
try:
|
| 505 |
+
# Use the same model to evaluate
|
| 506 |
+
evaluation_result = self.agent.run(evaluation_prompt)
|
| 507 |
+
|
| 508 |
+
# Try to parse JSON response
|
| 509 |
+
import json
|
| 510 |
+
try:
|
| 511 |
+
scores = json.loads(evaluation_result)
|
| 512 |
+
return scores
|
| 513 |
+
except:
|
| 514 |
+
# Fallback if JSON parsing fails
|
| 515 |
+
return {
|
| 516 |
+
"accuracy": 3,
|
| 517 |
+
"completeness": 3,
|
| 518 |
+
"clarity": 3,
|
| 519 |
+
"overall": 3,
|
| 520 |
+
"reasoning": "Could not parse evaluation response",
|
| 521 |
+
"raw_evaluation": evaluation_result
|
| 522 |
+
}
|
| 523 |
+
|
| 524 |
+
except Exception as e:
|
| 525 |
+
return {
|
| 526 |
+
"accuracy": 1,
|
| 527 |
+
"completeness": 1,
|
| 528 |
+
"clarity": 1,
|
| 529 |
+
"overall": 1,
|
| 530 |
+
"reasoning": f"Evaluation failed: {str(e)}"
|
| 531 |
+
}
|
| 532 |
+
|
| 533 |
+
def add_user_feedback(self, trace_id: str, feedback_score: int, comment: str = None):
|
| 534 |
+
"""
|
| 535 |
+
Add user feedback to a specific trace
|
| 536 |
+
|
| 537 |
+
Args:
|
| 538 |
+
trace_id: The trace ID to add feedback to
|
| 539 |
+
feedback_score: Score from 0-5 (0=very bad, 5=excellent)
|
| 540 |
+
comment: Optional comment from user
|
| 541 |
+
"""
|
| 542 |
+
try:
|
| 543 |
+
self.langfuse.score(
|
| 544 |
+
trace_id=trace_id,
|
| 545 |
+
name="user-feedback",
|
| 546 |
+
value=feedback_score,
|
| 547 |
+
comment=comment
|
| 548 |
+
)
|
| 549 |
+
self.langfuse.flush()
|
| 550 |
+
print(f"User feedback added: {feedback_score}/5")
|
| 551 |
except Exception as e:
|
| 552 |
+
print(f"Error adding user feedback: {e}")
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
# Example usage with observability
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
if __name__ == "__main__":
|
| 557 |
+
# Set up environment variables (you need to set these)
|
| 558 |
+
# os.environ["GOOGLE_API_KEY"] = "your-gemini-api-key"
|
| 559 |
+
# os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..."
|
| 560 |
+
# os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..."
|
| 561 |
+
|
| 562 |
+
# Test the agent with observability
|
| 563 |
+
agent = GAIAAgent(
|
| 564 |
+
user_id="test-user-123",
|
| 565 |
+
session_id="test-session-456"
|
| 566 |
+
)
|
| 567 |
|
| 568 |
# Example question
|
| 569 |
question_data = {
|
| 570 |
+
"Question": "How many studio albums Mercedes Sosa has published between 2000-2009?",
|
| 571 |
"task_id": ""
|
| 572 |
}
|
| 573 |
|
| 574 |
+
# Solve with full observability
|
| 575 |
+
answer = agent.solve_gaia_question(
|
| 576 |
+
question_data,
|
| 577 |
+
tags=["music-question", "discography"]
|
| 578 |
+
)
|
| 579 |
+
print(f"Answer: {answer}")
|
| 580 |
+
|
| 581 |
+
# Evaluate the answer
|
| 582 |
+
evaluation = agent.evaluate_answer(
|
| 583 |
+
question_data["Question"],
|
| 584 |
+
answer
|
| 585 |
+
)
|
| 586 |
+
print(f"Evaluation: {evaluation}")
|