File size: 13,054 Bytes
c8763bd
134a499
c8763bd
 
4cfc121
134a499
 
c8763bd
134a499
699b4cd
0f1bf97
 
c382b2a
134a499
483e3a1
0f1bf97
 
 
c8763bd
134a499
d262fb3
134a499
a894537
134a499
 
3d7033f
134a499
dcfabfb
6db5c25
3d7033f
3c37eb3
3d7033f
 
134a499
 
 
 
 
 
 
cdf41e7
dcfabfb
134a499
 
a894537
134a499
 
 
 
 
0321f62
a894537
0f1bf97
 
134a499
 
 
 
 
 
 
 
ad86e2e
223c247
0321f62
06b3632
3d7033f
 
 
 
 
 
 
 
 
efc3d5b
3d7033f
 
134a499
 
 
 
 
 
 
3d7033f
 
c8763bd
3d7033f
0321f62
3d7033f
 
cdf41e7
c5c2773
 
 
cdf41e7
bc255c5
aa1afc2
 
134a499
3d7033f
 
134a499
 
 
 
 
 
bf397e6
0321f62
134a499
0321f62
 
134a499
 
 
 
 
6203f23
134a499
 
 
 
 
5490c7c
b3a1bf0
 
 
e89d633
b3a1bf0
134a499
 
43b85eb
3d7033f
 
43b85eb
3d7033f
43b85eb
 
e89d633
c8763bd
 
d19e350
8541989
134a499
 
f3dc796
8e8c463
8541989
3d7033f
134a499
 
 
 
b3a1bf0
8e8c463
5236273
8e8c463
5aba478
0f1bf97
 
 
 
8e8c463
134a499
3d7033f
134a499
8985298
d3abea5
5643bcb
 
0f1bf97
 
134a499
 
0f1bf97
 
8e8c463
 
 
 
97058d0
c4dcfe7
 
 
 
3d7033f
c4dcfe7
0321f62
134a499
97058d0
134a499
c1efc37
134a499
 
 
3d7033f
 
 
134a499
b3a1bf0
 
d19e350
 
b3a1bf0
 
8e8c463
c8763bd
 
8e8c463
c8763bd
8e8c463
5721994
c8763bd
4b40065
134a499
 
 
4b40065
134a499
 
 
 
 
 
a29a8d2
134a499
4b40065
 
 
 
 
 
134a499
 
4b40065
 
134a499
4b40065
 
 
 
 
 
 
134a499
 
 
4b40065
 
0321f62
134a499
0321f62
 
4b40065
0321f62
 
 
c1efc37
0321f62
 
 
 
 
c1efc37
 
16a8bbd
3d7033f
16a8bbd
 
 
 
c1efc37
16a8bbd
 
 
 
 
 
 
 
c1efc37
0321f62
 
 
 
 
 
 
c1efc37
 
0321f62
c1efc37
0321f62
 
 
 
 
c1efc37
3d7033f
0321f62
3d7033f
 
 
 
0321f62
c1efc37
699b4cd
c1efc37
699b4cd
 
 
 
 
0321f62
 
 
 
 
134a499
4b40065
 
 
 
 
 
3d7033f
4b40065
 
 
134a499
4b40065
134a499
d19e350
 
 
 
 
 
 
 
 
 
 
 
 
 
134a499
 
d19e350
 
29e37fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os

import gradio as gr
import pandas as pd
import plotly.express as px
from huggingface_hub.file_download import hf_hub_download


from src.utils import process_model_name, process_model_arch
from src.assets.css_html_js import custom_css
from src.assets.text_content import (
    TITLE,
    ABOUT_TEXT,
    INTRODUCTION_TEXT,
    EXAMPLE_CONFIG_TEXT,
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
)

HF_TOKEN = os.environ.get("HF_TOKEN", None)
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB πŸ–₯️"}
ALL_COLUMNS_MAPPING = {
    "Model": "Model πŸ€—",
    "Arch": "Arch πŸ›οΈ",
    "Size": "Params (B) πŸ“",
    # deployment settings
    "backend.name": "Backend 🏭",
    "backend.torch_dtype": "Dtype πŸ“₯",
    "optimization": "Optimization πŸ› οΈ",
    "quantization": "Quantization πŸ—œοΈ",
    # measurements
    "Score": "Open LLM Score (%) ⬆️",
    "decode.throughput(tokens/s)": "Decode Throughput (tokens/s) ⬆️",
    "generate.throughput(tokens/s)": "E2E Throughput (tokens/s) ⬆️",
    "forward.latency(s)": "Prefill Latency (s) ⬇️",
    "generate.latency(s)": "E2E Latency (s) ⬇️",
    "generate.max_memory_allocated(MB)": "Allocated Memory (MB) ⬇️",
    "generate.max_memory_reserved(MB)": "Reserved Memory (MB) ⬇️",
    "generate.max_memory_used(MB)": "Used Memory (MB) ⬇️",
    "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) ⬇️",
}
SORTING_COLUMN = ["Score", "generate.throughput(tokens/s)"]
SORTING_ASCENDING = [False, True]
ALL_COLUMNS_DATATYPES = [
    # open llm
    "markdown",
    "markdown",
    "number",
    # deployment settings
    "str",
    "str",
    "str",
    "str",
    # measurements
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
]
# download data
hf_hub_download(
    repo_id="optimum/llm-perf-dataset",
    filename="open-llm.csv",
    local_dir="dataset",
    repo_type="dataset",
    token=HF_TOKEN,
)
OPEN_LLM = pd.read_csv("dataset/open-llm.csv")

MACHINE_TO_DATAFRAME = {}
for machine in MACHINE_TO_HARDWARE:
    hf_hub_download(
        repo_id="optimum/llm-perf-dataset",
        filename=f"{machine}/full-report.csv",
        local_dir="dataset",
        repo_type="dataset",
        token=HF_TOKEN,
    )
    MACHINE_TO_DATAFRAME[machine] = pd.read_csv(f"dataset/{machine}/full-report.csv")


def get_benchmark_df(machine="hf-dgx-01"):
    # merge on model
    llm_perf = MACHINE_TO_DATAFRAME[machine].copy()
    merged_df = OPEN_LLM.merge(llm_perf, left_on="Model", right_on="model")
    # transpose energy consumption
    merged_df["generate.energy_consumption(tokens/kWh)"] = (
        1 / merged_df["generate.energy_consumption(kWh/token)"].fillna(1)
    ).astype(int)
    # fix nan values
    merged_df.loc[
        merged_df["generate.energy_consumption(tokens/kWh)"] == 1,
        "generate.energy_consumption(tokens/kWh)",
    ] = pd.NA
    # add optimization column
    merged_df["optimization"] = merged_df[
        ["backend.to_bettertransformer", "backend.use_flash_attention_2"]
    ].apply(
        lambda x: "BetterTransformer"
        if x["backend.to_bettertransformer"]
        else ("FlashAttentionV2" if x["backend.use_flash_attention_2"] else "None"),
        axis=1,
    )
    # add quantization scheme
    merged_df["quantization"] = merged_df["backend.quantization_scheme"].apply(
        lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
    )
    # add decode throughput
    merged_df["decode.throughput(tokens/s)"] = (
        1000 / (merged_df["generate.latency(s)"] - merged_df["forward.latency(s)"])
    ).round(2)
    # sort by metric
    merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
    # filter columns
    merged_df = merged_df[list(ALL_COLUMNS_MAPPING.keys())]
    # rename columns
    merged_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)

    return merged_df


def get_benchmark_table(bench_df):
    copy_df = bench_df.copy()
    # transform
    copy_df["Model πŸ€—"] = copy_df["Model πŸ€—"].apply(process_model_name)
    copy_df["Arch πŸ›οΈ"] = copy_df["Arch πŸ›οΈ"].apply(process_model_arch)
    # process quantization
    copy_df["Open LLM Score (%) ⬆️"] = copy_df.apply(
        lambda x: f"{x['Open LLM Score (%) ⬆️']}**"
        if x["Quantization πŸ—œοΈ"] in ["BnB.4bit", "GPTQ.4bit"]
        else x["Open LLM Score (%) ⬆️"],
        axis=1,
    )
    return copy_df


def get_benchmark_chart(bench_df):
    copy_df = bench_df.copy()
    # transform
    copy_df["Arch πŸ›οΈ"] = copy_df["Arch πŸ›οΈ"].apply(process_model_arch)
    # plot
    fig = px.scatter(
        copy_df,
        y="Open LLM Score (%) ⬆️",
        x="E2E Latency (s) ⬇️",
        size="Allocated Memory (MB) ⬇️",
        color="Arch πŸ›οΈ",
        custom_data=list(ALL_COLUMNS_MAPPING.values()),
        color_discrete_sequence=px.colors.qualitative.Light24,
    )
    fig.update_layout(
        title={
            "text": "Latency vs. Score vs. Memory",
            "y": 0.95,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        },
        xaxis_title="Per 1000 Tokens Latency (s)",
        yaxis_title="Open LLM Score (%)",
        legend_title="LLM Architecture",
        width=1200,
        height=600,
    )
    fig.update_traces(
        hovertemplate="<br>".join(
            [
                f"<b>{column}:</b> %{{customdata[{i}]}}"
                for i, column in enumerate(ALL_COLUMNS_MAPPING.values())
            ]
        )
    )
    return fig


def filter_query(
    text,
    backends,
    datatypes,
    optimizations,
    quantizations,
    score,
    memory,
    machine,
):
    raw_df = get_benchmark_df(machine=machine)
    filtered_df = raw_df[
        raw_df["Model πŸ€—"].str.contains(text, case=False)
        & raw_df["Backend 🏭"].isin(backends)
        & raw_df["Dtype πŸ“₯"].isin(datatypes)
        & raw_df["Optimization πŸ› οΈ"].isin(optimizations)
        & raw_df["Quantization πŸ—œοΈ"].isin(quantizations)
        & (raw_df["Open LLM Score (%) ⬆️"] >= score)
        & (raw_df["Allocated Memory (MB) ⬇️"] <= memory)
    ]
    filtered_table = get_benchmark_table(filtered_df)
    filtered_chart = get_benchmark_chart(filtered_df)
    return filtered_table, filtered_chart


# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
    # leaderboard title
    gr.HTML(TITLE)
    # introduction text
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")

    with gr.Tabs(elem_classes="leaderboard-tabs"):
        machine_placeholders = {}
        machine_tables = {}
        machine_plots = {}
        ####################### HARDWARE TABS #######################
        for i, (machine, hardware) in enumerate(MACHINE_TO_HARDWARE.items()):
            # dummy placeholder of the machine name
            machine_placeholders[machine] = gr.Textbox(value=machine, visible=False)

            with gr.TabItem(hardware, id=i):
                with gr.Tabs(elem_classes="machine-tabs"):
                    # placeholder for full dataframe
                    machine_df = get_benchmark_df(machine=machine)
                    with gr.TabItem("Leaderboard πŸ…", id=0):
                        gr.HTML(
                            "πŸ‘‰ Scroll to the right πŸ‘‰ for additional columns.",
                            elem_id="descriptive-text",
                        )
                        # Original leaderboard table
                        machine_tables[machine] = gr.components.Dataframe(
                            value=get_benchmark_table(machine_df),
                            headers=list(ALL_COLUMNS_MAPPING.values()),
                            datatype=ALL_COLUMNS_DATATYPES,
                            elem_id="machine-table",
                        )
                    with gr.TabItem("Plot πŸ“Š", id=1):
                        gr.HTML(
                            "πŸ‘† Hover over the points πŸ‘† for additional information.",
                            elem_id="descriptive-text",
                        )
                        # Original leaderboard plot
                        machine_plots[machine] = gr.components.Plot(
                            value=get_benchmark_chart(machine_df),
                            elem_id="machine-plot",
                            show_label=False,
                        )

        ###################### CONTROL PANEL #######################
        with gr.TabItem("Control Panel πŸŽ›οΈ", id=2):
            gr.HTML(
                "Use this control panel to filter the leaderboard's table and plot.",  # noqa: E501
                elem_id="descriptive-text",
            )
            with gr.Row():
                with gr.Column():
                    search_bar = gr.Textbox(
                        label="Model πŸ€—",
                        info="πŸ” Search for a model name",
                        elem_id="search-bar",
                    )
            with gr.Row():
                with gr.Column(scale=1):
                    score_slider = gr.Slider(
                        label="Open LLM Score (%) πŸ“ˆ",
                        info="🎚️ Slide to minimum Open LLM score",
                        value=0,
                        elem_id="threshold-slider",
                    )
                with gr.Column(scale=1):
                    memory_slider = gr.Slider(
                        label="Peak Memory (MB) πŸ“ˆ",
                        info="🎚️ Slide to maximum Peak Memory",
                        minimum=0,
                        maximum=80 * 1024,
                        value=80 * 1024,
                        elem_id="memory-slider",
                    )
                with gr.Column(scale=1):
                    backend_checkboxes = gr.CheckboxGroup(
                        label="Backends 🏭",
                        choices=["pytorch", "onnxruntime"],
                        value=["pytorch", "onnxruntime"],
                        info="β˜‘οΈ Select the backends",
                        elem_id="backend-checkboxes",
                    )
            with gr.Row():
                with gr.Column(scale=1):
                    datatype_checkboxes = gr.CheckboxGroup(
                        label="Load Dtypes πŸ“₯",
                        choices=["float32", "float16"],
                        value=["float32", "float16"],
                        info="β˜‘οΈ Select the load dtypes",
                        elem_id="dtype-checkboxes",
                    )
                with gr.Column(scale=1):
                    optimization_checkboxes = gr.CheckboxGroup(
                        label="Optimizations πŸ› οΈ",
                        choices=["None", "BetterTransformer", "FlashAttentionV2"],
                        value=["None", "BetterTransformer", "FlashAttentionV2"],
                        info="β˜‘οΈ Select the optimization",
                        elem_id="optimization-checkboxes",
                    )
                with gr.Column(scale=1):
                    quantization_checkboxes = gr.CheckboxGroup(
                        label="Quantizations πŸ—œοΈ",
                        choices=["None", "BnB.4bit", "GPTQ.4bit"],
                        value=["None", "BnB.4bit", "GPTQ.4bit"],
                        info="β˜‘οΈ Select the quantization schemes",
                        elem_id="quantization-checkboxes",
                    )
            with gr.Row():
                filter_button = gr.Button(
                    value="Filter πŸš€",
                    elem_id="filter-button",
                )
            for machine in MACHINE_TO_HARDWARE:
                filter_button.click(
                    filter_query,
                    [
                        search_bar,
                        backend_checkboxes,
                        datatype_checkboxes,
                        optimization_checkboxes,
                        quantization_checkboxes,
                        score_slider,
                        memory_slider,
                        machine_placeholders[machine],
                    ],
                    [machine_tables[machine], machine_plots[machine]],
                )

        ####################### ABOUT TAB #######################
        with gr.TabItem("About πŸ“–", id=3):
            gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
            gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")

    ####################### CITATION #######################
    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                show_copy_button=True,
            )

# Launch demo
demo.queue().launch()