Spaces:
Running
Running
File size: 7,937 Bytes
4daeefd a6d3fdf d1e3b68 7724866 0f9db6d 7f9a235 0f9db6d a6d3fdf 0f9db6d a6d3fdf 0f9db6d a6d3fdf 7f9a235 d1e3b68 a6d3fdf 0f9db6d a6d3fdf 0f9db6d a6d3fdf 5468ec9 0f9db6d 5468ec9 0f9db6d 5468ec9 a6d3fdf 0f9db6d a6d3fdf 0f9db6d d1e3b68 0f9db6d 5468ec9 0f9db6d 5468ec9 0f9db6d 5468ec9 0f9db6d 5468ec9 0f9db6d d1e3b68 0f9db6d a6d3fdf 0f9db6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import time
from huggingface_hub import create_repo, whoami
import gradio as gr
from config_store import (
get_process_config,
get_inference_config,
get_onnxruntime_config,
get_openvino_config,
get_pytorch_config,
get_ipex_config,
)
from optimum_benchmark.launchers.base import Launcher # noqa
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark.backends.onnxruntime.utils import TASKS_TO_ORTMODELS
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL
from optimum_benchmark import (
BenchmarkConfig,
PyTorchConfig,
OVConfig,
ORTConfig,
IPEXConfig,
ProcessConfig,
InferenceConfig,
Benchmark,
)
from optimum_benchmark.logging_utils import setup_logging
DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["onnxruntime", "openvino", "pytorch", "ipex"]
MODELS = [
"hf-internal-testing/tiny-random-bert",
"google-bert/bert-base-uncased",
"openai-community/gpt2",
]
TASKS = (
set(TASKS_TO_OVMODEL.keys())
& set(TASKS_TO_ORTMODELS.keys())
& set(TASKS_TO_IPEXMODEL.keys())
& set(TASKS_TO_MODEL_LOADERS.keys())
)
def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
return "You must be logged in to use this space"
username = whoami(oauth_token.token)["name"]
create_repo(
f"{username}/benchmarks",
token=oauth_token.token,
repo_type="dataset",
exist_ok=True,
)
configs = {
"process": {},
"inference": {},
"onnxruntime": {},
"openvino": {},
"pytorch": {},
"ipex": {},
}
for key, value in kwargs.items():
if key.label == "model":
model = value
elif key.label == "task":
task = value
elif key.label == "backends":
backends = value
elif "." in key.label:
backend, argument = key.label.split(".")
configs[backend][argument] = value
else:
continue
configs["process"] = ProcessConfig(**configs.pop("process"))
configs["inference"] = InferenceConfig(**configs.pop("inference"))
configs["onnxruntime"] = ORTConfig(
task=task,
model=model,
device=DEVICE,
**configs["onnxruntime"],
)
configs["openvino"] = OVConfig(
task=task,
model=model,
device=DEVICE,
**configs["openvino"],
)
configs["pytorch"] = PyTorchConfig(
task=task,
model=model,
device=DEVICE,
**configs["pytorch"],
)
configs["ipex"] = IPEXConfig(
task=task,
model=model,
device=DEVICE,
**configs["ipex"],
)
md_output = (
f"<h3>Running benchmark for model {model} on task {task} with {backends}</h3>"
)
yield md_output
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
for backend in backends:
md_output += f"<br>π Launching benchmark for {backend}"
yield md_output
try:
benchmark_name = f"{timestamp}/{backend}"
benchmark_config = BenchmarkConfig(
name=benchmark_name,
backend=configs[backend],
launcher=configs[LAUNCHER],
scenario=configs[SCENARIO],
)
benchmark_config.push_to_hub(
repo_id=f"{username}/benchmarks",
subfolder=benchmark_name,
token=oauth_token.token,
)
benchmark_report = Benchmark.launch(benchmark_config)
benchmark_report.push_to_hub(
repo_id=f"{username}/benchmarks",
subfolder=benchmark_name,
token=oauth_token.token,
)
benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
benchmark.push_to_hub(
repo_id=f"{username}/benchmarks",
subfolder=benchmark_name,
token=oauth_token.token,
)
md_output += (
f"<br>β
Benchmark for {backend} backend completed successfully"
)
yield md_output
except Exception as e:
md_output += (
f"<br>β Error while running benchmark for {backend} backend: {e}"
)
yield md_output
def build_demo():
with gr.Blocks() as demo:
# add login button
gr.LoginButton(min_width=250)
# add image
gr.Markdown(
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
)
# title text
gr.Markdown(
"<h1 style='text-align: center'>π€ Optimum-Benchmark Interface ποΈ</h1>"
)
# explanation text
gr.HTML(
"<h3 style='text-align: center'>"
"Zero code Gradio interface of "
"<a href='https://github.com/huggingface/optimum-benchmark.git'>"
"Optimum-Benchmark"
"</a>"
"<br>"
"</h3>"
)
model = gr.Dropdown(
label="model",
choices=MODELS,
value=MODELS[0],
info="Model to run the benchmark on.",
)
task = gr.Dropdown(
label="task",
choices=TASKS,
value="feature-extraction",
info="Task to run the benchmark on.",
)
backends = gr.CheckboxGroup(
interactive=True,
label="backends",
choices=BACKENDS,
value=BACKENDS,
info="Backends to run the benchmark on.",
)
with gr.Row():
with gr.Accordion(label="Process Config", open=False, visible=True):
process_config = get_process_config()
with gr.Row():
with gr.Accordion(label="Scenario Config", open=False, visible=True):
inference_config = get_inference_config()
with gr.Row() as backend_configs:
with gr.Accordion(label="OnnxRuntime Config", open=False, visible=True):
onnxruntime_config = get_onnxruntime_config()
with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
openvino_config = get_openvino_config()
with gr.Accordion(label="PyTorch Config", open=False, visible=True):
pytorch_config = get_pytorch_config()
with gr.Accordion(label="IPEX Config", open=False, visible=True):
ipex_config = get_ipex_config()
backends.change(
inputs=backends,
outputs=backend_configs.children,
fn=lambda values: [
gr.update(visible=value in values) for value in BACKENDS
],
)
with gr.Row():
button = gr.Button(value="Run Benchmark", variant="primary")
with gr.Row():
md_output = gr.Markdown(label="Output", value="")
button.click(
fn=run_benchmark,
inputs={
task,
model,
backends,
*process_config.values(),
*inference_config.values(),
*onnxruntime_config.values(),
*openvino_config.values(),
*pytorch_config.values(),
*ipex_config.values(),
},
outputs=[md_output],
concurrency_limit=1,
)
return demo
if __name__ == "__main__":
os.environ["LOG_TO_FILE"] = "0"
os.environ["LOG_LEVEL"] = "INFO"
setup_logging(level="INFO", prefix="MAIN-PROCESS")
demo = build_demo()
demo.queue(max_size=10).launch()
|