File size: 7,529 Bytes
4d423a9
 
 
7682345
c9751c2
4d423a9
 
 
 
7682345
4d423a9
 
 
7682345
 
4d423a9
 
 
7682345
 
 
 
 
 
4d423a9
 
 
 
e7932f8
4d423a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7682345
4d423a9
 
 
7682345
 
 
4d423a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7682345
 
4d423a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7682345
 
4d423a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7682345
4d423a9
 
 
7682345
4d423a9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import time
import traceback

import gradio as gr
from huggingface_hub import create_repo, whoami
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark import (
    Benchmark,
    BenchmarkConfig,
    ProcessConfig,
    InferenceConfig,
    PyTorchConfig,
    OVConfig,
)
from optimum_benchmark.logging_utils import setup_logging

from .config_store import (
    get_process_config,
    get_inference_config,
    get_openvino_config,
    get_pytorch_config,
)

DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["pytorch", "openvino"]
MODELS = [
    "google-bert/bert-base-uncased",
    "openai-community/gpt2",
]
TASKS = set(TASKS_TO_OVMODEL.keys()) & set(TASKS_TO_MODEL_LOADERS.keys())


def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
    if oauth_token.token is None:
        gr.Error("Please login to be able to run the benchmark.")
        return tuple(None for _ in BACKENDS)

    timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
    username = whoami(oauth_token.token)["name"]
    repo_id = f"{username}/benchmarks"
    token = oauth_token.token

    create_repo(repo_id, token=token, repo_type="dataset", exist_ok=True)
    gr.Info(f'Benchmark will be pushed to "{username}/benchmarks" on the Hub')

    configs = {
        "process": {},
        "inference": {},
        "openvino": {},
        "pytorch": {},
    }

    for key, value in kwargs.items():
        if key.label == "model":
            model = value
        elif key.label == "task":
            task = value
        elif key.label == "backends":
            backends = value
        elif "." in key.label:
            backend, argument = key.label.split(".")
            configs[backend][argument] = value
        else:
            continue

    for key in configs.keys():
        for k, v in configs[key].items():
            if "kwargs" in k:
                configs[key][k] = eval(v)

    configs["process"] = ProcessConfig(**configs.pop("process"))
    configs["inference"] = InferenceConfig(**configs.pop("inference"))

    configs["openvino"] = OVConfig(
        task=task,
        model=model,
        device=DEVICE,
        **configs["openvino"],
    )
    configs["pytorch"] = PyTorchConfig(
        task=task,
        model=model,
        device=DEVICE,
        **configs["pytorch"],
    )

    outputs = {
        "openvino": "Running benchmark for OpenVINO backend",
        "pytorch": "Running benchmark for PyTorch backend",
    }

    yield tuple(outputs[b] for b in BACKENDS)

    for backend in backends:
        try:
            benchmark_name = f"{timestamp}/{backend}"
            benchmark_config = BenchmarkConfig(
                name=benchmark_name,
                backend=configs[backend],
                launcher=configs[LAUNCHER],
                scenario=configs[SCENARIO],
            )
            benchmark_config.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            benchmark_report = Benchmark.launch(benchmark_config)
            benchmark_report.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
            benchmark.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            gr.Info(f"Pushed benchmark to {username}/benchmarks/{benchmark_name}")

            outputs[backend] = f"\n{benchmark_report.to_markdown_text()}"

            yield tuple(outputs[b] for b in BACKENDS)

        except Exception:
            gr.Error(f"Error while running benchmark for {backend}")

            outputs[backend] = f"\n{traceback.format_exc()}"

            yield tuple(outputs[b] for b in BACKENDS)


def build_demo():
    with gr.Blocks() as demo:
        # add login button
        gr.LoginButton(min_width=250)

        # add image
        gr.HTML(
            """<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
            "<h1 style='text-align: center'>🤗 Optimum-Benchmark Interface 🏋️</h1>"
            "<p style='text-align: center'>"
            "This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends."
            "<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
            "</p>"
        )

        model = gr.Dropdown(
            label="model",
            choices=MODELS,
            value=MODELS[0],
            info="Model to run the benchmark on.",
        )
        task = gr.Dropdown(
            label="task",
            choices=TASKS,
            value="feature-extraction",
            info="Task to run the benchmark on.",
        )
        backends = gr.CheckboxGroup(
            interactive=True,
            label="backends",
            choices=BACKENDS,
            value=BACKENDS,
            info="Backends to run the benchmark on.",
        )

        with gr.Row():
            with gr.Accordion(label="Process Config", open=False, visible=True):
                process_config = get_process_config()

        with gr.Row():
            with gr.Accordion(label="Scenario Config", open=False, visible=True):
                inference_config = get_inference_config()

        with gr.Row() as backend_configs:
            with gr.Accordion(label="PyTorch Config", open=False, visible=True):
                pytorch_config = get_pytorch_config()
            with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
                openvino_config = get_openvino_config()

        backends.change(
            inputs=backends,
            outputs=backend_configs.children,
            fn=lambda values: [
                gr.update(visible=value in values) for value in BACKENDS
            ],
        )

        with gr.Row():
            button = gr.Button(value="Run Benchmark", variant="primary")

        with gr.Row() as md_output:
            with gr.Accordion(label="PyTorch Output", open=True, visible=True):
                pytorch_output = gr.Markdown()
            with gr.Accordion(label="OpenVINO Output", open=True, visible=True):
                openvino_output = gr.Markdown()

        backends.change(
            inputs=backends,
            outputs=md_output.children,
            fn=lambda values: [
                gr.update(visible=value in values) for value in BACKENDS
            ],
        )

        button.click(
            fn=run_benchmark,
            inputs={
                task,
                model,
                backends,
                *process_config.values(),
                *inference_config.values(),
                *pytorch_config.values(),
                *openvino_config.values(),
            },
            outputs={
                pytorch_output,
                openvino_output,
            },
            concurrency_limit=1,
        )

    return demo


if __name__ == "__main__":
    os.environ["LOG_TO_FILE"] = "0"
    os.environ["LOG_LEVEL"] = "INFO"
    setup_logging(level="INFO", prefix="MAIN-PROCESS")

    demo = build_demo()
    demo.queue(max_size=10).launch()