File size: 8,203 Bytes
4d423a9
 
 
111d85e
7682345
10c3b6b
 
 
 
 
 
 
c9751c2
c57954b
 
6c813f8
10c3b6b
13373dd
 
 
 
 
 
 
efb091c
 
 
4d423a9
7682345
4d423a9
 
b516823
7682345
 
4d423a9
 
6c813f8
4d423a9
 
 
 
 
e7932f8
13373dd
efb091c
13373dd
4d423a9
 
c57954b
47984ee
4d423a9
47984ee
4d423a9
 
 
 
fcf7625
 
4d423a9
 
 
 
 
 
 
 
81f0c10
 
 
 
 
 
4d423a9
 
 
 
b680a21
a61e83a
 
 
b430e89
4d423a9
fcf7625
b680a21
a61e83a
fcf7625
a61e83a
b430e89
4d423a9
 
b516823
4d423a9
b516823
 
c27b8a4
b516823
 
 
81f0c10
 
 
b516823
81f0c10
b516823
 
c57954b
4d423a9
 
bfd434f
4d423a9
b516823
4d423a9
 
 
 
 
 
b516823
 
4d423a9
81f0c10
b516823
81f0c10
4d423a9
 
81f0c10
b516823
81f0c10
4d423a9
 
c57954b
 
 
 
 
47984ee
 
4d423a9
47984ee
4d423a9
47984ee
 
4d423a9
47984ee
4d423a9
 
bfd434f
 
 
c57954b
 
 
 
 
 
bfd434f
 
 
4d423a9
 
bfd434f
 
 
4d423a9
 
bfd434f
4d423a9
 
bfd434f
 
 
4d99b49
bfd434f
 
 
 
 
 
 
 
 
4d423a9
bfd434f
 
fcf7625
bfd434f
 
4d423a9
 
fcf7625
 
 
 
 
 
bfd434f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47984ee
 
 
 
 
bfd434f
 
 
 
 
 
 
 
fcf7625
bfd434f
 
 
 
 
 
 
47984ee
 
bfd434f
 
 
4d423a9
 
 
 
 
47984ee
4d423a9
bfd434f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import time
import traceback
from typing import Optional

from config_store import (
    get_process_config,
    get_inference_config,
    get_openvino_config,
    get_pytorch_config,
)

import gradio as gr
from huggingface_hub import whoami
from huggingface_hub.errors import GatedRepoError
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from optimum_benchmark.launchers.device_isolation_utils import *  # noqa
from optimum_benchmark.backends.openvino.utils import (
    TASKS_TO_OVMODELS,
    TASKS_TO_OVPIPELINES,
)
from optimum_benchmark.backends.transformers_utils import (
    TASKS_TO_AUTO_MODEL_CLASS_NAMES,
)
from optimum_benchmark.backends.diffusers_utils import (
    TASKS_TO_AUTO_PIPELINE_CLASS_NAMES,
)
from optimum_benchmark import (
    Benchmark,
    BenchmarkConfig,
    InferenceConfig,
    ProcessConfig,
    PyTorchConfig,
    OVConfig,
)
from optimum_benchmark.logging_utils import setup_logging
from optimum_benchmark.task_utils import infer_task_from_model_name_or_path


DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["pytorch", "openvino"]
TASKS = set(TASKS_TO_OVMODELS.keys() | TASKS_TO_OVPIPELINES) & set(
    TASKS_TO_AUTO_MODEL_CLASS_NAMES.keys() | TASKS_TO_AUTO_PIPELINE_CLASS_NAMES.keys()
)


def parse_configs(inputs):
    configs = {"process": {}, "inference": {}, "pytorch": {}, "openvino": {}}

    for key, value in inputs.items():
        if key.label == "model":
            model = value
        elif key.label == "task":
            task = value
        elif key.label == "openvino_model":
            openvino_label = value
        elif "." in key.label:
            backend, argument = key.label.split(".")
            configs[backend][argument] = value
        else:
            continue

    for key in configs.keys():
        for k, v in configs[key].items():
            if k in [
                "input_shapes",
                "generate_kwargs",
                "call_kwargs",
                "numactl_kwargs",
            ]:
                configs[key][k] = eval(v)

    configs["process"] = ProcessConfig(**configs.pop("process"))
    configs["inference"] = InferenceConfig(**configs.pop("inference"))
    configs["pytorch"] = PyTorchConfig(
        task=task,
        model=model,
        device=DEVICE,
        **{k: v for k, v in configs["pytorch"].items() if v},
    )

    configs["openvino"] = OVConfig(
        task=task,
        model=openvino_label or model,
        device=DEVICE,
        **{k: v for k, v in configs["openvino"].items() if v},
    )

    return configs


def run_benchmark(inputs, oauth_token: Optional[gr.OAuthToken]):
    if oauth_token is None:
        raise gr.Error("Please login to be able to run the benchmark.")

    timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
    user_name = whoami(oauth_token.token)["name"]
    repo_id = f"{user_name}/benchmarks"
    folder = f"{timestamp}"

    gr.Info(f"πŸ“© Benchmark will be saved under {repo_id} in the folder {folder}")

    outputs = {backend: "Running..." for backend in BACKENDS}
    configs = parse_configs(inputs)
    yield tuple(outputs[b] for b in BACKENDS)

    for backend in BACKENDS:
        try:
            benchmark_name = f"{folder}/{backend}"
            benchmark_config = BenchmarkConfig(
                name=benchmark_name,
                backend=configs[backend],
                launcher=configs[LAUNCHER],
                scenario=configs[SCENARIO],
            )
            benchmark_report = Benchmark.launch(benchmark_config)

            benchmark_config.push_to_hub(
                repo_id=repo_id,
                subfolder=benchmark_name,
                token=oauth_token.token,
            )
            benchmark_report.push_to_hub(
                repo_id=repo_id,
                subfolder=benchmark_name,
                token=oauth_token.token,
            )

        except GatedRepoError:
            outputs[backend] = f"πŸ”’ Model {configs[backend].model} is gated."
            yield tuple(outputs[b] for b in BACKENDS)
            gr.Info("πŸ”’ Gated Repo Error while trying to access the model.")

        except Exception:
            outputs[backend] = f"\n```python-traceback\n{traceback.format_exc()}```\n"
            yield tuple(outputs[b] for b in BACKENDS)
            gr.Info(f"❌ Error while running benchmark for {backend} backend.")

        else:
            outputs[backend] = f"\n{benchmark_report.to_markdown_text()}\n"
            yield tuple(outputs[b] for b in BACKENDS)
            gr.Info(f"βœ… Benchmark for {backend} backend ran successfully.")


def update_task(model_id):
    try:
        inferred_task = infer_task_from_model_name_or_path(model_id)

    except GatedRepoError:
        raise gr.Error(
            f"Model {model_id} is gated, please use optimum-benchmark locally to benchmark it."
        )

    except Exception:
        raise gr.Error(
            f"Error while inferring task for {model_id}, please select a task manually."
        )

    if inferred_task not in TASKS:
        raise gr.Error(
            f"Task {inferred_task} is not supported by OpenVINO, please select a task manually."
        )

    return inferred_task


with gr.Blocks() as demo:
    # add login button
    gr.LoginButton()

    # add image
    gr.HTML(
        """<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
        "<h1 style='text-align: center'>πŸ€— Optimum-Benchmark Interface πŸ‹οΈ</h1>"
        "<p style='text-align: center'>"
        "This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends."
        "<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
        "</p>"
    )

    with gr.Column(variant="panel"):
        model = HuggingfaceHubSearch(
            placeholder="Search for a PyTorch model",
            search_type="model",
            label="model",
        )

        openvino_model = HuggingfaceHubSearch(
            placeholder="Search for an OpenVINO model (optional)",
            search_type="model",
            label="openvino_model",
        )

        with gr.Row():
            task = gr.Dropdown(
                info="Task to run the benchmark on.",
                elem_id="task-dropdown",
                choices=TASKS,
                label="task",
            )

    with gr.Column(variant="panel"):
        with gr.Accordion(label="Process Config", open=False, visible=True):
            process_config = get_process_config()
        with gr.Accordion(label="Inference Config", open=False, visible=True):
            inference_config = get_inference_config()

    with gr.Row() as backend_configs:
        with gr.Accordion(label="PyTorch Config", open=False, visible=True):
            pytorch_config = get_pytorch_config()
        with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
            openvino_config = get_openvino_config()

    with gr.Row():
        button = gr.Button(value="Run Benchmark", variant="primary")

    with gr.Row():
        with gr.Accordion(label="PyTorch Report", open=True, visible=True):
            pytorch_report = gr.Markdown()
        with gr.Accordion(label="OpenVINO Report", open=True, visible=True):
            openvino_report = gr.Markdown()

    model.submit(inputs=model, outputs=task, fn=update_task)

    button.click(
        fn=run_benchmark,
        inputs={
            task,
            model,
            openvino_model,
            # backends,
            *process_config.values(),
            *inference_config.values(),
            *pytorch_config.values(),
            *openvino_config.values(),
        },
        outputs={
            pytorch_report,
            openvino_report,
        },
        concurrency_limit=1,
    )


if __name__ == "__main__":
    os.environ["LOG_TO_FILE"] = "0"
    os.environ["LOG_LEVEL"] = "INFO"
    setup_logging(level="INFO", prefix="MAIN-PROCESS")

    demo.queue(max_size=10).launch()