File size: 1,197 Bytes
8f81d37
be9658a
dc523cd
 
 
126bdd3
dc523cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f81d37
 
 
 
dc523cd
 
 
605b45a
dc523cd
 
 
 
 
 
 
 
 
 
 
 
2d3ef06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
import torch
from transformers import pipeline

MODEL_NAME = "openai/whisper-tiny"
BATCH_SIZE = 8

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text

def greet(name):
    return "Hello " + name + "!!"

iface = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="test",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)
iface.launch()