File size: 6,418 Bytes
75ec781
 
 
 
 
 
 
 
6c08561
2f6cfc2
 
 
75ec781
 
 
 
 
c0b4343
 
 
 
 
 
 
75ec781
631e701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c08561
75ec781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a92f8fe
2801168
 
399079f
2801168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d746a50
 
7a071a4
2801168
d746a50
75ec781
 
 
 
 
 
 
 
 
 
 
 
 
631e701
fda7aed
75ec781
 
2801168
631e701
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from transformers import (
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from PIL import Image
from threading import Thread
import gradio as gr
import spaces
import subprocess

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

model_name = "scb10x/typhoon2-qwen2vl-7b-vision-instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_name, torch_dtype="auto", device_map="auto"
)

min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28

processor = AutoProcessor.from_pretrained(
    model_name, min_pixels=min_pixels, max_pixels=max_pixels
)

theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c50="#f7f7fd",
        c100="#dfdef8",
        c200="#c4c1f2",
        c300="#a29eea",
        c400="#8f8ae6",
        c500="#756fe0",
        c600="#635cc1",
        c700="#4f4a9b",
        c800="#433f83",
        c900="#302d5e",
        c950="#302d5e",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

@spaces.GPU
def bot_streaming(message, history, max_new_tokens=512):
    txt = message["text"]

    messages = []
    images = []

    for i, msg in enumerate(history):
        if isinstance(msg[0], tuple):
            messages.append(
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": history[i + 1][0]},
                        {"type": "image"},
                    ],
                }
            )
            messages.append(
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": history[i + 1][1]}],
                }
            )
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i - 1], tuple) and isinstance(msg[0], str):
            pass
        elif isinstance(history[i - 1][0], str) and isinstance(msg[0], str):
            messages.append(
                {"role": "user", "content": [{"type": "text", "text": msg[0]}]}
            )
            messages.append(
                {"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}
            )

    if len(message["files"]) == 1:
        if isinstance(message["files"][0], str):
            image = Image.open(message["files"][0]).convert("RGB")
        else:
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append(
            {
                "role": "user",
                "content": [{"type": "text", "text": txt}, {"type": "image"}],
            }
        )
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if images == []:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")

    streamer = TextIteratorStreamer(
        processor, skip_special_tokens=True, skip_prompt=True
    )

    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""

    for new_text in streamer:
        buffer += new_text
        yield buffer


demo = gr.ChatInterface(
    fn=bot_streaming,
    title="🌪️ Typhoon2-Vision: Vision-Language Model optimized for Thai (Research Preview)",
    description="""
    <ul>
        <li>📝 <b>Technical Report</b>: <a href="https://arxiv.org/abs/2412.13702" target="_blank">https://arxiv.org/abs/2412.13702 (Section 4)</a></li>
        <li>🤗 <b>Model weights</b>: <a href="https://huggingface.co/scb10x/typhoon2-qwen2vl-7b-vision-instruct" target="_blank">https://huggingface.co/scb10x/typhoon2-qwen2vl-7b-vision-instruct</a></li>
    </ul>
    <br />
    <details>
        <summary><strong>Disclaimer</strong></summary>
        The responses generated by this Artificial Intelligence (AI) system are autonomously constructed and do not necessarily reflect the views or positions of the developing organizations, their affiliates, or any of their employees. These AI-generated responses do not represent those of the organizations. The organizations do not endorse, support, sanction, encourage, verify, or agree with the comments, opinions, or statements generated by this AI. The information produced by this AI is not intended to malign any religion, ethnic group, club, organization, company, individual, anyone, or anything. It is not the intent of the organizations to malign any group or individual. The AI operates based on its programming and training data and its responses should not be interpreted as the explicit intent or opinion of the organizations.
    </details>
    <br />
    <details>
        <summary><strong>Terms of use</strong></summary>
        By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. Vision language models are prone to hallucinations to a greater extent compared to text-only LLMs.
    </details>
    <br />
    <details>
        <summary><strong>License</strong></summary>
        This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the Apache license 2.0.
    </details>
""",
    textbox=gr.MultimodalTextbox(
        placeholder="Type a message or drag and drop an image",
        file_types=["image"],
        file_count="multiple",
    ),
    additional_inputs=[
        gr.Slider(
            minimum=512,
            maximum=1024,
            value=512,
            step=1,
            label="Maximum number of new tokens to generate",
        )
    ],
    cache_examples=False,
    stop_btn="Stop Generation",
    fill_height=True,
    multimodal=True,
    theme=theme,
    # css="footer {visibility: hidden}",
)

demo.queue()
demo.launch(ssr_mode=False)