Spaces:
Runtime error
Runtime error
File size: 6,960 Bytes
3cbf1cd 2786a41 c58c4f8 2786a41 aaf6d52 2786a41 2c96486 2786a41 c58c4f8 2786a41 c58c4f8 2786a41 f6aa7b1 c58c4f8 5533ca9 714b860 5533ca9 4374e49 2786a41 834536d 2786a41 4374e49 3e8991a 4374e49 2786a41 3e8991a 2786a41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# This space used model: stabilityai/stable-diffusion-xl-base-1.0
# and model: stabilityai/stable-diffusion-xl-refiner-1.0
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO
batch_size=1
batch_count=1
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/sdxl/generate", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sdxl/models")
return response.json()
def list_samplers(self):
response = self._get(f"{self.base}/sdxl/samplers")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
prodia_client = Prodia(api_key=os.getenv("API_KEY"))
def flip_text(prompt, negative_prompt, steps, cfg_scale, width, height, seed):
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": "sd_xl_base_1.0.safetensors [be9edd61]",
"steps": steps,
"sampler": "DPM++ 2M Karras",
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
Fast SDXL
</h1>
</div>
</div>
""")
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", show_label=True, lines=1)
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=1):
image_output = gr.Image()
with gr.Row():
with gr.Accordion("Additionals inputs", open=False):
with gr.Column(scale=1):
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry", placeholder="What you don't want to see in the image", show_label=True, lines=1)
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Seed", value=-1)
with gr.Column(scale=1):
width = gr.Slider(label="↔️ Width", minimum=1024, maximum=1024, value=1024, step=8)
height = gr.Slider(label="↕️ Height", minimum=1024, maximum=1024, value=1024, step=8)
text_button.click(flip_text, inputs=[prompt, negative_prompt, steps, cfg_scale, width, height, seed], outputs=image_output)
demo.queue(concurrency_count=16, max_size=20, api_open=False).launch(max_threads=64)
|