File size: 25,560 Bytes
94da716 7331cf8 94da716 9125121 94da716 9125121 94da716 9125121 94da716 ba5c98e 94da716 705386d 94da716 4fc00f2 94da716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import io
import os
import requests
import torch
import torch.nn as nn
import torch.nn.functional as F
# from petrel_client.client import Client
from PIL import Image, ImageFile
from torch.nn.utils import rnn
from types import SimpleNamespace
from peft import LoraConfig, TaskType, get_peft_model
from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig
import numpy as np
# from header import *
from transformers import StoppingCriteria, StoppingCriteriaList
from .CLIP import load as load_clip
from .PROCESS import data
from .modeling_llama import LlamaForCausalLM
from .utils.pcl_utils import MEAN_COLOR_RGB, RandomCuboid, random_sampling
from .conversations import conversation_dict, default_conversation
ImageFile.LOAD_TRUNCATED_IMAGES = True
# sov: start of vision part; eov: end of vision part
VISION_TAGS = {
'pos': {'image': '<image>', 'pcl': '<pcl>'},
'sov': {'image': '<Img>', 'pcl': '<Pcl>'},
'eov': {'image': '</Img>', 'pcl': '</Pcl>'},
}
ModalityType = SimpleNamespace(
VISION="vision",
TEXT="text",
AUDIO="audio",
THERMAL="thermal",
DEPTH="depth",
IMU="imu",
)
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = stops
self.ENCOUNTERS = encounters
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
stop_count = 0
for stop in self.stops:
stop_count = (stop == input_ids[0]).sum().item()
if stop_count >= self.ENCOUNTERS:
return True
return False
class MyStoppingCriteria(StoppingCriteria):
def __init__(self, stops, input_ids):
super().__init__()
self.stops = [torch.tensor(stop).to('cuda:0') for stop in stops]
self.stop_flag = [0]*input_ids.shape[0]
def check_stop(self, input_ids):
for stop in self.stops:
if torch.all((stop == input_ids[-len(stop):])).item():
return True
return False
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
flag = 1
for id, output_id in enumerate(output_ids):
if self.stop_flag[id] == 1:
continue
if self.check_stop(output_id):
self.stop_flag[id] = 1
else:
flag = 0
if flag == 1:
return True
return False
def build_one_instance(tokenizer, conversation, vision_type='image'):
pos = VISION_TAGS['pos'][vision_type]
# sov = VISION_TAGS['sov'][vision_type]
eov = VISION_TAGS['eov'][vision_type]
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
turn['value'] = turn['value'].replace(f'{pos}\n', '').replace(f'\n{pos}', '')
text = f'{eov} ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id)
elif role == 'gpt':
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len, vision_type='image'):
batch_input_ids, batch_target_ids = [], []
for conversation in batch_of_conversations:
_, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation, vision_type=vision_type)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:,:max_tgt_len]
target_ids = target_ids[:,:max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
def make_prompt_start(system_header=False, vision_type='image', task_type='normal'):
# TODO: choose prefix according to task type
PROMPT_START = f'### Human: {VISION_TAGS["sov"][vision_type]}'
if system_header:
if task_type == 'normal':
return f"{default_conversation.system}\n\n" + PROMPT_START
else:
return [f"{conversation_dict[task]}\n\n" + PROMPT_START for task in task_type]
else:
return PROMPT_START
class LAMMPEFTModel(nn.Module):
'''LoRA for LLaMa model'''
def __init__(self, **args):
super(LAMMPEFTModel, self).__init__()
self.args = args
# self.client = Client('~/petreloss.conf')
self.client = None
self.vision_type = args['vision_type'] if 'vision_type' in args else 'image'
encoder_pretrain = args['encoder_pretrain'] if 'encoder_pretrain' in args else 'clip'
self.encoder_pretrain = encoder_pretrain
assert encoder_pretrain in ['imagebind', 'clip', 'epcl'], f'Encoder_pretrain: {encoder_pretrain} Not Implemented'
if not encoder_pretrain == 'clip' or os.path.isfile(args['encoder_ckpt_path']):
encoder_ckpt_path = args['encoder_ckpt_path']
elif not os.path.isfile(args['encoder_ckpt_path']):
encoder_ckpt_path = 'ViT-L/14'
vicuna_ckpt_path = args['vicuna_ckpt_path']
system_header = args['system_header'] if 'system_header' in args else False
stage = args['stage']
# TODO: checkout vision token number; for ImageBind = 1; Defaultly to use 1 global token for this
# -1 for last embedding; -2 for transformer output
self.vision_feature_type = args['vision_feature_type']
self.num_vision_token = args['num_vision_token']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print (f'Initializing [{encoder_pretrain}] visual encoder from {encoder_ckpt_path} [{device}]...')
# TODO: Make sure the number of vision tokens is correct
if args['encoder_pretrain'].lower() == 'clip':
clip_encoder, self.visual_preprocess = load_clip(encoder_ckpt_path, device=device)
self.visual_encoder = clip_encoder.visual
if self.vision_feature_type == 'global': # global feature from CLIP
self.vision_hidden_size = 768
self.num_vision_token = 1
assert self.num_vision_token == 1, 'Only 1 global token is available!'
elif self.vision_feature_type == 'local': # patch features from CLIP ViT
self.vision_hidden_size = 1024
self.num_vision_token = min(self.num_vision_token, 256) # may cut partial tokens
# freeze vision encoder
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder.eval()
print ('Visual encoder initialized.')
print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
# add the lora module
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.args['lora_r'],
lora_alpha=self.args['lora_alpha'],
lora_dropout=self.args['lora_dropout'],
target_modules=self.args['lora_target_modules']
)
self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_ckpt_path)
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.padding_side = "right"
print ('Language decoder initialized.')
self.llama_proj = nn.Linear(
self.vision_hidden_size, self.llama_model.config.hidden_size
)
print ('LLaMa projection layer initialized.')
self.max_tgt_len = args['max_tgt_len']
self.system_header = system_header
self.device = torch.cuda.current_device()
def encode_image(self, image_paths):
"""encode images to llama inputs
:param tupe image_paths: (bsz, )
:return tensor, tensor: input feature to llama, attention mask to llama
"""
if self.encoder_pretrain == 'imagebind':
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
elif self.encoder_pretrain == 'clip':
inputs = self.load_and_transform_vision_data_clip(image_paths, self.device) # bsz x 3 x 224 x 224
inputs = inputs.to(self.llama_model.dtype) # clip requires torch.float32
inputs_llama = self.clip_encode_image(inputs)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1/256
return inputs_llama, atts_llama
def my_encode_image(self, images):
"""encoder loaded image objects"""
if self.encoder_pretrain == 'clip':
inputs = data.transform_vision_data(images, self.device) # bsz x 3 x 224 x 224
inputs_llama = self.clip_encode_image(inputs) # bsz x 1/256 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1/256
return inputs_llama, atts_llama
else:
raise NotImplementedError("Encoder pretrain [{}] not implemented".format(self.encoder_pretrain))
def encode_pcl(self, pcl_paths):
# load pcl data
inputs = self.load_and_transform_pcl_data(pcl_paths, self.device) # bsz x 40000 x 3
inputs = inputs.to(self.llama_model.dtype) # clip requires torch.float32
with torch.no_grad():
if self.vision_feature_type == 'global':
raise NotImplementedError("Global feature not implemented for pcl")
elif self.vision_feature_type == 'local':
embeddings = self.visual_encoder(inputs)[1][:, :self.num_vision_token] # bsz x 256 x 1024;
image_embeds = embeddings.reshape(-1, self.vision_hidden_size).to(self.llama_model.dtype) # bsz*num vision token x 1024
inputs_llama = self.llama_proj(image_embeds).reshape(-1, self.num_vision_token, self.llama_model.config.hidden_size) # bsz x num_vision_token x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1/256
return inputs_llama, atts_llama
def clip_encode_image(self, inputs):
inputs = inputs.to(self.llama_model.dtype) # clip requires torch.float32
with torch.no_grad():
if self.vision_feature_type == 'global':
embeddings = self.visual_encoder(inputs) # bsz x 768
image_embeds = embeddings.to(self.llama_model.dtype)
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
elif self.vision_feature_type == 'local':
embeddings = self.visual_encoder.forward_patch_features(inputs)[:, :self.num_vision_token] # bsz x self.num_vision_token x 1024
image_embeds = embeddings.reshape(-1, self.vision_hidden_size).to(self.llama_model.dtype) # bsz*num vision token x 1024
inputs_llama = self.llama_proj(image_embeds).reshape(-1, self.num_vision_token, self.llama_model.config.hidden_size) # bsz x num_vision_token x llama_size
else:
raise NotImplementedError("{} not Implemented".format(self.vision_feature_type))
return inputs_llama
def load_and_transform_vision_data_clip(self, image_paths, device):
if image_paths is None:
return None
image_ouputs = []
for image_path in image_paths:
if os.path.exists(image_path):
image = Image.open(image_path)
elif image_path.startswith('s3://') and self.client is not None:
image = Image.open(io.BytesIO(self.client.get(image_path, update_cache=True))).convert("RGB")
elif image_path.startswith('http://'):
image = Image.open(requests.get(image_path, stream=True).raw)
else:
print("can not load image: ", image_path)
image_outpt = self.visual_preprocess(image).to(device) # 3 x 224 x 224
image_ouputs.append(image_outpt)
return torch.stack(image_ouputs, dim=0) # B x 3 x 224 x 224
def load_and_transform_pcl_data(self, pcl_paths, device):
if pcl_paths is None:
return None
pcl_output = []
for pcl_path in pcl_paths:
mesh_vertices = np.load(pcl_path) # 150000, 3
if not self.use_color:
point_cloud = mesh_vertices[:, 0:3] # do not use color for now
else:
point_cloud = mesh_vertices[:, 0:6]
point_cloud[:, 3:] = (point_cloud[:, 3:] - MEAN_COLOR_RGB) / 256.0
if self.use_height:
floor_height = np.percentile(point_cloud[:, 2], 0.99)
height = point_cloud[:, 2] - floor_height
point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)], 1)
point_cloud, _ = random_sampling(
point_cloud, self.num_points, return_choices=True
)
pcl_output.append(torch.from_numpy(point_cloud))
return torch.stack(pcl_output, dim=0).to(device) # bsz x num_points x 3
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask, system_header, task_type):
'''
input_ids, target_ids, attention_mask: bsz x s2
'''
input_ids = input_ids.to(self.device) # bsz x s2
target_ids = target_ids.to(self.device) # bsz x s2
attention_mask = attention_mask.to(self.device) # bsz x s2
batch_size = img_embeds.shape[0]
# return list of headers if multiple tasks
p_before = make_prompt_start(system_header=system_header, vision_type=self.vision_type, task_type=task_type)
if isinstance(p_before, list):
p_before_tokens = [self.llama_tokenizer(p,
return_tensors="pt", add_special_tokens=False).input_ids[0].to(self.device) for p in p_before]
# TODO: fix bug here
p_before_token_ids = rnn.pad_sequence(p_before_tokens, batch_first=True, padding_value=self.llama_tokenizer.pad_token_id) # bsz x s1
p_before_attn_mask = p_before_token_ids.ne(self.llama_tokenizer.pad_token_id)
else:
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device) # [s1, s1...] list of batch size
p_before_token_ids = p_before_tokens.input_ids.expand(batch_size, -1) # bsz x s1
p_before_attn_mask = p_before_tokens.attention_mask.expand(batch_size, -1) # bsz x s1
# peft model need deeper call
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_token_ids) #.expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_token_ids.dtype,
device=p_before_token_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_after_embeds], dim=1) # bsz x (1+s1+NumToken+s2) x embed_dim
# make target ids for prefix part
empty_targets = (
torch.ones([batch_size, 1 + p_before_embeds.size()[1] + self.num_vision_token], # 1 (bos) + s1 + num_image_tokens (image vector)
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1 + 1)
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + num_image_tokens + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
# atts_prefix = torch.ones([batch_size, 1 + p_before_embeds.size()[1] + self.num_vision_token], dtype=torch.long).to(self.device) # bsz x (1[bos] + s1 +num_image_tokens)
atts_bos = torch.ones([batch_size, 1], dtype=torch.long).to(self.device) # bsz x 1
atts_img = torch.ones([batch_size, self.num_vision_token], dtype=torch.long).to(self.device) # bsz x num_image_tokens
attention_mask = torch.cat([atts_bos, p_before_attn_mask, atts_img, attention_mask], dim=1)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + num_image_tokens + s2)
return inputs_embeds, targets, attention_mask
def forward(self, inputs):
"""Model Forward in training
:param class inputs: model itself
:raises ValueError: valueerror if not image or pcl
:return list: loss & token acc
"""
# image_paths = inputs['image_paths']
assert self.vision_type == inputs['vision_type'] # single modal case
task_type = inputs['task_type']
vision_paths = inputs['vision_paths']
if self.vision_type == 'image':
vision_embeds, _ = self.encode_image(vision_paths)
elif self.vision_type == 'pcl':
vision_embeds, _ = self.encode_pcl(vision_paths) # Bsz x N token x C
else:
raise ValueError('vision type [{}] not supported'.format(self.vision_type))
output_texts = inputs['output_texts']
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len, self.vision_type)
inputs_embeds, targets, attention_mask = self.prompt_wrap(vision_embeds, input_ids, target_ids, attention_mask, self.system_header, task_type)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuarcy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1: -1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
return loss, gen_acc
def extract_multimodal_feature(self, inputs):
"""Extract multimodal features from the input in Generation (Test)
:param Dict inputs: input dict; modality: path
:return _type_: _description_
"""
features = []
if inputs['image_paths']:
image_embeds, _ = self.encode_image(inputs['image_paths'])
features.append(image_embeds)
if 'images' in inputs and inputs['images']: # image objects input in testing
image_embeds, _ = self.my_encode_image(inputs['images'])
return image_embeds
# features.append(image_embeds)
if 'pcl_paths' in inputs and inputs['pcl_paths']:
pcl_embeds, _ = self.encode_pcl(inputs['pcl_paths'])
features.append(pcl_embeds)
# TODO: Cautions HERE! Multimodality allowed in test ONLY!
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0) # sum all modality features together
return feature_embeds
def prepare_generation_embedding(self, inputs):
"""prepare for generation
:param class inputs: model
:return Dict: generation input
"""
eov = VISION_TAGS['eov'][self.vision_type]
# TODO: add System header & image token size
prompt_list = inputs['prompt'] # questions from user
if len(inputs['modality_embeds']) == 1:
feature_embeds = inputs['modality_embeds'][0]
else:
feature_embeds = self.extract_multimodal_feature(inputs)
inputs['modality_embeds'].append(feature_embeds)
batch_size = feature_embeds.shape[0]
p_before = make_prompt_start(vision_type=self.vision_type) # no system header in test
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_after_embeds_list = []
p_after_tokens_list = []
for prompt in prompt_list:
# text = '</Img> ' + prompt + '\n### Assistant:'
text = f'{eov} ' + prompt + '\n### Assistant:'
p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_tokens_list.append(p_after_tokens.input_ids.squeeze(0))
p_after_tokens = rnn.pad_sequence(p_after_tokens_list, batch_first=True, padding_value=self.llama_tokenizer.pad_token_id)
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens)
# text = f'{eov} ' + prompt + '\n### Assistant:'
# p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
# p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
# print(bos_embeds.shape, p_before_embeds.shape, feature_embeds.shape, p_after_embeds.shape)
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_after_embeds], dim=1) # bsz x (1+s1+NumVisionToken+s2) x embed_dim
return inputs_embeds
def generate(self, inputs):
'''
inputs = {
'image_paths': optional,
'audio_paths': optional
'video_paths': optional
'thermal_paths': optional
'mode': generation mode,
'prompt': human input prompt,
'max_tgt_len': generation length,
'top_p': top_p,
'temperature': temperature
'modality_embeds': None or torch.tensor
'modality_cache': save the image cache
}
'''
input_embeds = self.prepare_generation_embedding(inputs)
# stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
stopping_criteria = StoppingCriteriaList([MyStoppingCriteria([[2277]], input_embeds)])
outputs = self.llama_model.generate(
inputs_embeds=input_embeds,
max_new_tokens=inputs['max_tgt_len'],
top_p=inputs['top_p'],
temperature=inputs['temperature'],
do_sample=True,
use_cache=True,
stopping_criteria=stopping_criteria,
)
#output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
output_text = self.llama_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return output_text
|