File size: 18,812 Bytes
38dd8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5cff80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852ded9
 
 
 
 
 
 
d30fa97
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
 
d30fa97
 
 
 
 
852ded9
38dd8f0
 
 
d30fa97
 
38dd8f0
 
 
852ded9
38dd8f0
 
 
852ded9
38dd8f0
ecb47d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
ecb47d1
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30fa97
10c000d
 
 
 
 
 
 
 
 
 
 
 
d30fa97
38dd8f0
10c000d
 
38dd8f0
10c000d
 
 
38dd8f0
10c000d
 
 
38dd8f0
10c000d
 
 
 
38dd8f0
 
 
 
 
 
 
 
d5cff80
 
d30fa97
d819968
 
 
 
d5cff80
 
 
 
 
d819968
d30fa97
d819968
1160b91
 
d819968
 
38dd8f0
1160b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
4af64e1
2dfb3f5
4af64e1
2dfb3f5
 
 
4af64e1
2dfb3f5
 
 
 
 
4af64e1
 
2dfb3f5
4af64e1
d819968
 
ecb47d1
9bf26ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb47d1
 
 
 
 
 
 
 
 
 
9bf26ec
d6f5e9d
ecb47d1
da47978
015ec9d
 
d6f5e9d
df5b718
015ec9d
 
 
df5b718
 
 
 
 
 
 
 
 
 
 
 
d30fa97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb47d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df5b718
 
 
 
 
 
 
d6f5e9d
df5b718
 
 
 
 
 
d6f5e9d
df5b718
 
 
 
 
 
da47978
e87b1f0
2447d97
d6f5e9d
2447d97
49cf663
 
2447d97
49cf663
2447d97
d6f5e9d
2447d97
49cf663
 
2447d97
e87b1f0
ecb47d1
 
 
 
 
 
 
d30fa97
 
ecb47d1
d30fa97
ecb47d1
d30fa97
 
 
ecb47d1
 
 
 
 
 
 
 
 
 
 
2447d97
da47978
ecb47d1
 
 
 
 
 
 
 
df5b718
49cf663
da47978
2dfb3f5
da47978
d30fa97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download

import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
# ์ƒ๋‹จ์— import ์ถ”๊ฐ€
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# ๋ฒˆ์—ญ ํ•จ์ˆ˜ ์ถ”๊ฐ€
def translate_to_english(text: str) -> str:
    """ํ•œ๊ธ€ ํ…์ŠคํŠธ๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
    if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text):
        try:
            translated = translator(text)[0]['translation_text']
            return translated
        except Exception as e:
            print(f"Translation error: {e}")
            return text
    return text

BoundingBox = tuple[int, int, int, int]

pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# HF ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("Please set the HF_TOKEN environment variable")

try:
    login(token=HF_TOKEN)
except Exception as e:
    raise ValueError(f"Failed to login to Hugging Face: {str(e)}")

# ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)

gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)

# FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16,
    use_auth_token=HF_TOKEN
)
pipe.load_lora_weights(
    hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        use_auth_token=HF_TOKEN
    )
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
    if not bboxes:
        return None
    for bbox in bboxes:
        assert len(bbox) == 4
        assert all(isinstance(x, int) for x in bbox)
    return (
        min(bbox[0] for bbox in bboxes),
        min(bbox[1] for bbox in bboxes),
        max(bbox[2] for bbox in bboxes),
        max(bbox[3] for bbox in bboxes),
    )

def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
    x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
    return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)

def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
    inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
    with no_grad():
        outputs = gd_model(**inputs)
    width, height = img.size
    results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
        outputs,
        inputs["input_ids"],
        target_sizes=[(height, width)],
    )[0]
    assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
    bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
    return bbox_union(bboxes.numpy().tolist())

def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
    assert img.size == mask_img.size
    img = img.convert("RGB")
    mask_img = mask_img.convert("L")
    if defringe:
        rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
        foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
        img = Image.fromarray((foreground * 255).astype("uint8"))
    result = Image.new("RGBA", img.size)
    result.paste(img, (0, 0), mask_img)
    return result


def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
    """์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •ํ•˜๋Š” ํ•จ์ˆ˜"""
    new_width = ((width + 7) // 8) * 8
    new_height = ((height + 7) // 8) * 8
    return new_width, new_height

def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
    """์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ„์‚ฐ"""
    if aspect_ratio == "1:1":
        return base_size, base_size
    elif aspect_ratio == "16:9":
        return base_size * 16 // 9, base_size
    elif aspect_ratio == "9:16":
        return base_size, base_size * 16 // 9
    elif aspect_ratio == "4:3":
        return base_size * 4 // 3, base_size
    return base_size, base_size

def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
    """๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜"""
    try:
        # ์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ํฌ๊ธฐ ๊ณ„์‚ฐ
        width, height = calculate_dimensions(aspect_ratio)
        
        # 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
        width, height = adjust_size_to_multiple_of_8(width, height)
        
        with timer("Background generation"):
            image = pipe(
                prompt=prompt,
                width=width,
                height=height,
                num_inference_steps=8,
                guidance_scale=4.0,
            ).images[0]
                
        return image
    except Exception as e:
        raise gr.Error(f"Background generation failed: {str(e)}")


def create_position_grid():
    """3x3 ์œ„์น˜ ์„ ํƒ ๊ทธ๋ฆฌ๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” HTML"""
    return """
    <div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
        <button class="position-btn" data-pos="top-left">โ†–</button>
        <button class="position-btn" data-pos="top-center">โ†‘</button>
        <button class="position-btn" data-pos="top-right">โ†—</button>
        <button class="position-btn" data-pos="middle-left">โ†</button>
        <button class="position-btn" data-pos="middle-center">โ€ข</button>
        <button class="position-btn" data-pos="middle-right">โ†’</button>
        <button class="position-btn" data-pos="bottom-left">โ†™</button>
        <button class="position-btn" data-pos="bottom-center" data-default="true">โ†“</button>
        <button class="position-btn" data-pos="bottom-right">โ†˜</button>
    </div>
    <script>
        const buttons = document.querySelectorAll('.position-btn');
        buttons.forEach(btn => {
            btn.style.width = '40px';
            btn.style.height = '40px';
            btn.style.border = '1px solid #ccc';
            btn.style.borderRadius = '4px';
            btn.style.cursor = 'pointer';
            if (btn.dataset.default === 'true') {
                btn.style.backgroundColor = '#2196F3';
                btn.style.color = 'white';
            }
        });
    </script>
    """

def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
    """์˜ค๋ธŒ์ ํŠธ์˜ ์œ„์น˜ ๊ณ„์‚ฐ"""
    bg_width, bg_height = bg_size
    obj_width, obj_height = obj_size
    
    positions = {
        "top-left": (0, 0),
        "top-center": ((bg_width - obj_width) // 2, 0),
        "top-right": (bg_width - obj_width, 0),
        "middle-left": (0, (bg_height - obj_height) // 2),
        "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
        "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
        "bottom-left": (0, bg_height - obj_height),
        "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
        "bottom-right": (bg_width - obj_width, bg_height - obj_height)
    }
    
    return positions.get(position, positions["bottom-center"])

def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
    """์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •"""
    width = int(image.width * scale_percent / 100)
    height = int(image.height * scale_percent / 100)
    return image.resize((width, height), Image.Resampling.LANCZOS)

def combine_with_background(foreground: Image.Image, background: Image.Image, 
                          position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
    """์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํ•ฉ์„ฑ ํ•จ์ˆ˜"""
    # ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ค€๋น„
    result = background.convert('RGBA')
    
    # ์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •
    scaled_foreground = resize_object(foreground, scale_percent)
    
    # ์˜ค๋ธŒ์ ํŠธ ์œ„์น˜ ๊ณ„์‚ฐ
    x, y = calculate_object_position(position, result.size, scaled_foreground.size)
    
    # ํ•ฉ์„ฑ
    result.paste(scaled_foreground, (x, y), scaled_foreground)
    return result

@spaces.GPU
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
    time_log: list[str] = []
    if isinstance(prompt, str):
        t0 = time.time()
        bbox = gd_detect(img, prompt)
        time_log.append(f"detect: {time.time() - t0}")
        if not bbox:
            print(time_log[0])
            raise gr.Error("No object detected")
    else:
        bbox = prompt
    t0 = time.time()
    mask = segmenter(img, bbox)
    time_log.append(f"segment: {time.time() - t0}")
    return mask, bbox, time_log

def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
    try:
        if img.width > 2048 or img.height > 2048:
            orig_res = max(img.width, img.height)
            img.thumbnail((2048, 2048))
            if isinstance(prompt, tuple):
                x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
                prompt = (x0, y0, x1, y1)

        mask, bbox, time_log = _gpu_process(img, prompt)
        masked_alpha = apply_mask(img, mask, defringe=True)

        if bg_prompt:
            background = generate_background(bg_prompt, aspect_ratio)
            combined = combine_with_background(masked_alpha, background)
        else:
            combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)

        thresholded = mask.point(lambda p: 255 if p > 10 else 0)
        bbox = thresholded.getbbox()
        to_dl = masked_alpha.crop(bbox)

        temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        to_dl.save(temp, format="PNG")
        temp.close()

        return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
        
    except Exception as e:
        raise gr.Error(f"Processing failed: {str(e)}")

def on_change_bbox(prompts: dict[str, Any] | None):
    return gr.update(interactive=prompts is not None)


def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
    return gr.update(interactive=bool(img and prompt))


# process_prompt ํ•จ์ˆ˜ ์ˆ˜์ •
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]:
    try:
        if img is None or prompt.strip() == "":
            raise gr.Error("Please provide both image and prompt")
        
        # ํ”„๋กฌํ”„ํŠธ ๋ฒˆ์—ญ
        prompt = translate_to_english(prompt)
        if bg_prompt:
            bg_prompt = translate_to_english(bg_prompt)
        
        # Process the image
        results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
        
        # ํ•ฉ์„ฑ๋œ ์ด๋ฏธ์ง€์™€ ์ถ”์ถœ๋œ ์ด๋ฏธ์ง€๋งŒ ๋ฐ˜ํ™˜
        return results[1], results[2]
    except Exception as e:
        raise gr.Error(str(e))

def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
    try:
        if img is None or box_input.strip() == "":
            raise gr.Error("Please provide both image and bounding box coordinates")
        
        try:
            coords = eval(box_input)
            if not isinstance(coords, list) or len(coords) != 4:
                raise ValueError("Invalid box format")
            bbox = tuple(int(x) for x in coords)
        except:
            raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
        
        # Process the image
        results, _ = _process(img, bbox)
        
        # ํ•ฉ์„ฑ๋œ ์ด๋ฏธ์ง€์™€ ์ถ”์ถœ๋œ ์ด๋ฏธ์ง€๋งŒ ๋ฐ˜ํ™˜
        return results[1], results[2]
    except Exception as e:
        raise gr.Error(str(e))

# Event handler functions ์ˆ˜์ •
def update_process_button(img, prompt):
    return gr.update(
        interactive=bool(img and prompt),
        variant="primary" if bool(img and prompt) else "secondary"
    )

def update_box_button(img, box_input):
    try:
        if img and box_input:
            coords = eval(box_input)
            if isinstance(coords, list) and len(coords) == 4:
                return gr.update(interactive=True, variant="primary")
        return gr.update(interactive=False, variant="secondary")
    except:
        return gr.update(interactive=False, variant="secondary")


# CSS ์ •์˜
css = """
footer {display: none}
.main-title {
    text-align: center;
    margin: 2em 0;
    padding: 1em;
    background: #f7f7f7;
    border-radius: 10px;
}
.main-title h1 {
    color: #2196F3;
    font-size: 2.5em;
    margin-bottom: 0.5em;
}
.main-title p {
    color: #666;
    font-size: 1.2em;
}
.container {
    max-width: 1200px;
    margin: auto;
    padding: 20px;
}
.tabs {
    margin-top: 1em;
}
.input-group {
    background: white;
    padding: 1em;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
    background: white;
    padding: 1em;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
    background: #2196F3;
    border: none;
    color: white;
    padding: 0.5em 1em;
    border-radius: 4px;
    cursor: pointer;
    transition: background 0.3s ease;
}
button.primary:hover {
    background: #1976D2;
}
.position-btn {
    transition: all 0.3s ease;
}
.position-btn:hover {
    background-color: #e3f2fd;
}
.position-btn.selected {
    background-color: #2196F3;
    color: white;
}
"""

# UI ๊ตฌ์„ฑ
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML("""
        <div class="main-title">
            <h1>๐ŸŽจ Image Object Extractor</h1>
            <p>Extract objects from images using text prompts</p>
        </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(
                type="pil",
                label="Upload Image",
                interactive=True
            )
            text_prompt = gr.Textbox(
                label="Object to Extract",
                placeholder="Enter what you want to extract...",
                interactive=True
            )
            with gr.Row():
                bg_prompt = gr.Textbox(
                    label="Background Prompt (optional)",
                    placeholder="Describe the background...",
                    interactive=True,
                    scale=3
                )
                aspect_ratio = gr.Dropdown(
                    choices=["1:1", "16:9", "9:16", "4:3"],
                    value="1:1",
                    label="Aspect Ratio",
                    interactive=True,
                    visible=True,
                    scale=1
                )
            
            # ์˜ค๋ธŒ์ ํŠธ ์œ„์น˜์™€ ํฌ๊ธฐ ์กฐ์ • ์ปจํŠธ๋กค
            with gr.Row(visible=False) as object_controls:
                with gr.Column(scale=1):
                    gr.HTML(create_position_grid())
                    position = gr.State(value="bottom-center")
                with gr.Column(scale=1):
                    scale_slider = gr.Slider(
                        minimum=10,
                        maximum=200,
                        value=100,
                        step=10,
                        label="Object Size (%)"
                    )
            
            process_btn = gr.Button(
                "Process",
                variant="primary",
                interactive=False
            )

        with gr.Column(scale=1):
            with gr.Row():
                combined_image = gr.Image(
                    label="Combined Result",
                    show_download_button=True,
                    type="pil",
                    height=512
                )
            with gr.Row():
                extracted_image = gr.Image(
                    label="Extracted Object",
                    show_download_button=True,
                    type="pil",
                    height=256
                )

    # Event bindings
    input_image.change(
        fn=update_process_button,
        inputs=[input_image, text_prompt],
        outputs=process_btn,
        queue=False
    )
    
    text_prompt.change(
        fn=update_process_button,
        inputs=[input_image, text_prompt],
        outputs=process_btn,
        queue=False
    )

    def update_controls(bg_prompt):
        """๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ปจํŠธ๋กค ํ‘œ์‹œ ์—…๋ฐ์ดํŠธ"""
        is_visible = bool(bg_prompt)
        return [
            gr.update(visible=is_visible),  # aspect_ratio
            gr.update(visible=is_visible),  # object_controls
        ]

    bg_prompt.change(
        fn=update_controls,
        inputs=bg_prompt,
        outputs=[aspect_ratio, object_controls],
        queue=False
    )

    # ์œ„์น˜ ์„ ํƒ ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ
    def update_position(evt: gr.SelectData) -> str:
        """์œ„์น˜ ์„ ํƒ ์—…๋ฐ์ดํŠธ"""
        return evt.value

    position.change(
        fn=lambda x: gr.update(value=x),
        inputs=position,
        outputs=position
    )

    process_btn.click(
        fn=process_prompt,
        inputs=[
            input_image,
            text_prompt,
            bg_prompt,
            aspect_ratio,
            position,
            scale_slider
        ],
        outputs=[combined_image, extracted_image],
        queue=True
    )

demo.queue(max_size=30, api_open=False)
demo.launch()