File size: 21,274 Bytes
2caf84c
0e0ee20
 
 
 
 
 
e300c6e
c724573
e300c6e
2caf84c
7039ded
607d766
e2c1d93
0e0ee20
 
 
 
 
 
c724573
 
463aefd
c724573
 
 
 
e300c6e
 
 
 
 
 
 
 
 
0e0ee20
f3e96f9
c59400c
c724573
 
e2c1d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816d2d
 
 
 
 
 
 
 
 
 
 
11166a4
 
1816d2d
 
2c6e805
 
1816d2d
 
 
 
 
 
11166a4
1816d2d
 
 
 
11166a4
1816d2d
11166a4
1816d2d
 
 
 
 
2c6e805
 
1816d2d
 
 
11166a4
1816d2d
 
 
 
 
 
 
2c6e805
 
1816d2d
 
 
 
 
 
2c6e805
11166a4
1816d2d
 
 
 
 
 
 
2c6e805
 
1816d2d
 
 
 
 
 
2c6e805
 
 
 
 
 
 
 
 
 
 
0e0ee20
0b93385
11166a4
aad2ddd
5b82e60
72cad74
463aefd
c724573
e93307c
72cad74
463aefd
72cad74
 
463aefd
1816d2d
c724573
 
 
 
72cad74
e300c6e
11166a4
e300c6e
 
 
 
 
 
 
 
 
 
 
 
1816d2d
e300c6e
 
 
 
1816d2d
 
 
11166a4
1816d2d
 
 
 
 
 
 
 
 
11166a4
1816d2d
c724573
1816d2d
 
69da03e
e300c6e
1816d2d
11166a4
 
1816d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0ee20
e2c1d93
 
 
1816d2d
 
11166a4
 
e300c6e
 
11166a4
e300c6e
 
 
 
1816d2d
e300c6e
 
 
 
1816d2d
2caf84c
2c6e805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caf84c
 
2c6e805
 
2caf84c
 
 
 
 
2c6e805
2caf84c
2c6e805
2caf84c
 
40d0ad1
2caf84c
 
 
 
 
 
 
 
 
 
 
 
 
2c6e805
2caf84c
 
 
 
 
 
 
 
 
 
2c6e805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caf84c
2c6e805
 
2caf84c
2c6e805
2caf84c
2c6e805
 
 
 
 
 
 
 
 
 
 
 
 
2caf84c
0b93385
 
1441e58
07d3eff
8648a3b
504da62
 
8648a3b
2caf84c
2c6e805
1816d2d
 
2caf84c
3c05113
 
 
 
07d3eff
2c6e805
1500e0d
504da62
11166a4
504da62
 
1816d2d
d6802e8
 
1816d2d
02302e4
07d3eff
2c6e805
 
 
 
 
 
 
 
0e0ee20
457748c
0e0ee20
 
 
 
8648a3b
 
0e0ee20
2caf84c
 
0257a93
2caf84c
 
457748c
3c05113
8dce9c7
0e0ee20
2c6d128
e300c6e
 
a5fbe4d
2c6d128
 
 
1cbd1d7
2c6d128
 
 
 
 
 
 
 
1816d2d
5ecece8
 
1816d2d
2c6e805
11166a4
1816d2d
 
 
2c6e805
11166a4
1816d2d
 
 
2c6e805
 
 
 
 
 
5ecece8
0257a93
 
2caf84c
2c6e805
 
2caf84c
 
 
2c6e805
 
2caf84c
07d3eff
 
0e0ee20
1816d2d
3c05113
0e0ee20
 
 
2c6e805
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, selected_indices, width, height):
    selected_index = evt.index
    selected_indices = selected_indices or []
    if selected_index in selected_indices:
        # LoRA is already selected, remove it
        selected_indices.remove(selected_index)
    else:
        if len(selected_indices) < 2:
            selected_indices.append(selected_index)
        else:
            raise gr.Error("You can select up to 2 LoRAs only.")

    # Initialize outputs
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"

    # Update prompt placeholder based on last selected LoRA
    if selected_indices:
        last_selected_lora = loras[selected_indices[-1]]
        new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
    else:
        new_placeholder = "Type a prompt after selecting a LoRA"

    return (
        gr.update(placeholder=new_placeholder),
        selected_info_1,
        selected_info_2,
        selected_indices,
        lora_scale_1,
        lora_scale_2,
        width,
        height,
    )

def remove_lora_1(selected_indices):
    selected_indices = selected_indices or []
    if len(selected_indices) >= 1:
        selected_indices.pop(0)
    # Update selected_info_1 and selected_info_2
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2

def remove_lora_2(selected_indices):
    selected_indices = selected_indices or []
    if len(selected_indices) >= 2:
        selected_indices.pop(1)
    # Update selected_info_1 and selected_info_2
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2

def randomize_loras(selected_indices):
    if len(loras) < 2:
        raise gr.Error("Not enough LoRAs to randomize.")
    selected_indices = random.sample(range(len(loras)), 2)
    selected_info_1 = f"### LoRA 1 Selected: [{loras[selected_indices[0]]['title']}](https://huggingface.co/{loras[selected_indices[0]]['repo']}) ✨"
    selected_info_2 = f"### LoRA 2 Selected: [{loras[selected_indices[1]]['title']}](https://huggingface.co/{loras[selected_indices[1]]['repo']}) ✨"
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2

@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": 1.0},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

@spaces.GPU(duration=70)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": 1.0},
        output_type="pil",
    ).images[0]
    return final_image 
    
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
    if not selected_indices:
        raise gr.Error("You must select at least one LoRA before proceeding.")

    selected_loras = [loras[idx] for idx in selected_indices]

    # Build the prompt with trigger words
    prompt_mash = prompt
    for lora in selected_loras:
        trigger_word = lora.get('trigger_word', '')
        if trigger_word:
            if lora.get("trigger_position") == "prepend":
                prompt_mash = f"{trigger_word} {prompt_mash}"
            else:
                prompt_mash = f"{prompt_mash} {trigger_word}"

    # Unload previous LoRA weights
    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()

    # Load LoRA weights with respective scales
    with calculateDuration("Loading LoRA weights"):
        for idx, lora in enumerate(selected_loras):
            lora_path = lora['repo']
            scale = lora_scale_1 if idx == 0 else lora_scale_2
            if image_input is not None:
                if "weights" in lora:
                    pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
                else:
                    pipe_i2i.load_lora_weights(lora_path, multiplier=scale)
            else:
                if "weights" in lora:
                    pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
                else:
                    pipe.load_lora_weights(lora_path, multiplier=scale)

    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

    # Generate image
    if image_input is not None:
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
        # Consume the generator to get the final image
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter+=1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
        yield final_image, seed, gr.update(value=progress_bar, visible=False)

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(base_model)
        if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
            raise Exception("Not a FLUX LoRA!")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        safetensors_name = None
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            raise Exception("Invalid Hugging Face repository with a *.safetensors LoRA")
        if not safetensors_name:
            raise Exception("No *.safetensors file found in the repository")
        return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora, selected_indices):
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)

            # Update gallery
            gallery_items = [(item["image"], item["title"]) for item in loras]
            # Update selected_indices if there's room
            if len(selected_indices) < 2:
                selected_indices.append(existing_item_index)
                selected_info_1 = ""
                selected_info_2 = ""
                lora_scale_1 = 0.95
                lora_scale_2 = 0.95
                if len(selected_indices) >= 1:
                    lora1 = loras[selected_indices[0]]
                    selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
                if len(selected_indices) >= 2:
                    lora2 = loras[selected_indices[1]]
                    selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
                return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
                        selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2)
            else:
                return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
                        gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange())
        except Exception as e:
            print(e)
            return gr.update(visible=True, value=str(e)), gr.update(visible=True), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()

def remove_custom_lora(custom_lora_info, custom_lora_button, selected_indices):
    global loras
    if loras:
        custom_lora_repo = loras[-1]['repo']
        # Remove from loras list
        loras = loras[:-1]
        # Remove from selected_indices if selected
        custom_lora_index = len(loras)
        if custom_lora_index in selected_indices:
            selected_indices.remove(custom_lora_index)
    # Update gallery
    gallery_items = [(item["image"], item["title"]) for item in loras]
    return gr.update(visible=False), gr.update(visible=False), gr.update(value=gallery_items), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''

with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
        elem_id="title",
    )
    selected_indices = gr.State([])
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            randomize_button = gr.Button("🎲", variant="secondary")
    with gr.Row():
        selected_info_1 = gr.Markdown("")
        lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
        remove_button_1 = gr.Button("Remove LoRA 1")
        selected_info_2 = gr.Markdown("")
        lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
        remove_button_2 = gr.Button("Remove LoRA 2")
    with gr.Row():
        with gr.Column():
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
                gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress",visible=False)
            result = gr.Image(label="Generated Image")
    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
    
    gallery.select(
        update_selection,
        inputs=[selected_indices, width, height],
        outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height]
    )
    remove_button_1.click(
        remove_lora_1,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
    )
    remove_button_2.click(
        remove_lora_2,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
    )
    randomize_button.click(
        randomize_loras,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
    )
    # Changed from submit to change to trigger on paste
    custom_lora.change(
        add_custom_lora,
        inputs=[custom_lora, selected_indices],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
    )
    custom_lora_button.click(
        remove_custom_lora,
        inputs=[custom_lora_info, custom_lora_button, selected_indices],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()