Spaces:
Sleeping
Sleeping
File size: 27,887 Bytes
b20c769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 |
"""
https://github.com/nasaharvest/presto/blob/main/single_file_presto.py
"""
import math
from collections import OrderedDict
from copy import deepcopy
from pathlib import Path
from typing import Optional, Tuple, Union, cast
import numpy as np
import torch
from einops import repeat
from torch import nn
from torch.jit import Final
from torch.nn import functional as F
from src.utils import device
PRESTO_S2_BANDS = ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B11", "B12"]
PRESTO_S1_BANDS = ["VV", "VH"]
PRESTO_BANDS = (
PRESTO_S1_BANDS
+ PRESTO_S2_BANDS
+ ["temperature_2m", "total_precipitation", "elevation", "slope", "NDVI"]
)
DEFAULT_MODEL_PATH = Path(__file__).parent / "default_model.pt"
# used in normalization
PRESTO_ADD_BY = [
25.0,
25.0,
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
float(0.0),
-272.15,
0.0,
float(0.0),
float(0.0),
float(0.0),
]
PRESTO_DIV_BY = [
25.0,
25.0,
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
float(1e4),
35.0,
0.03,
2000.0,
50.0,
float(1.0),
]
BANDS_GROUPS_IDX = OrderedDict(
[
("S1", [0, 1]),
("S2_RGB", [2, 3, 4]),
("S2_Red_Edge", [5, 6, 7]),
("S2_NIR_10m", [8]),
("S2_NIR_20m", [9]),
("S2_SWIR", [10, 11]),
("ERA5", [12, 13]),
("SRTM", [14, 15]),
("NDVI", [16]),
]
)
NUM_DYNAMIC_WORLD_CLASSES = 9
class Attention(nn.Module):
# https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
fast_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0.0,
proj_drop=0.0,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.fast_attn = hasattr(torch.nn.functional, "scaled_dot_product_attention") # FIXME
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.fast_attn:
x = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias=True,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.drop1 = nn.Dropout(drop)
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop2 = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_norm=False,
drop=0.0,
attn_drop=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=drop,
norm_layer=norm_layer,
)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
def forward(self, x):
x = x + self.ls1(self.attn(self.norm1(x)))
x = x + self.ls2(self.mlp(self.norm2(x)))
return x
def get_sinusoid_encoding_table(positions, d_hid, T=1000):
"""Sinusoid position encoding table
positions: int or list of integer, if int range(positions)"""
if isinstance(positions, int):
positions = list(range(positions))
def cal_angle(position, hid_idx):
return position / np.power(T, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in positions])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if torch.cuda.is_available():
return torch.FloatTensor(sinusoid_table).cuda()
else:
return torch.FloatTensor(sinusoid_table)
def get_month_encoding_table(d_hid):
"""Sinusoid month encoding table, for 12 months indexed from 0-11"""
assert d_hid % 2 == 0
angles = np.arange(0, 13) / (12 / (2 * np.pi))
sin_table = np.sin(np.stack([angles for _ in range(d_hid // 2)], axis=-1))
cos_table = np.cos(np.stack([angles for _ in range(d_hid // 2)], axis=-1))
month_table = np.concatenate([sin_table[:-1], cos_table[:-1]], axis=-1)
if torch.cuda.is_available():
return torch.FloatTensor(month_table).cuda()
else:
return torch.FloatTensor(month_table)
def month_to_tensor(
month: Union[torch.Tensor, int], batch_size: int, seq_len: int, device: torch.device
):
if isinstance(month, int):
assert cast(int, month) < 12
else:
assert max(cast(torch.Tensor, month.flatten())) < 12
if isinstance(month, int):
# >>> torch.fmod(torch.tensor([9., 10, 11, 12, 13, 14]), 12)
# tensor([ 9., 10., 11., 0., 1., 2.])
month = (
torch.fmod(torch.arange(month, month + seq_len, dtype=torch.long), 12)
.expand(batch_size, seq_len)
.to(device)
)
elif len(month.shape) == 1:
month = torch.stack(
[torch.fmod(torch.arange(m, m + seq_len, dtype=torch.long), 12) for m in month]
).to(device)
return month
class Encoder(nn.Module):
def __init__(
self,
embedding_size: int = 128,
channel_embed_ratio: float = 0.25,
month_embed_ratio: float = 0.25,
depth=2,
mlp_ratio=2,
num_heads=8,
max_sequence_length=24,
):
super().__init__()
self.band_groups = BANDS_GROUPS_IDX
self.embedding_size = embedding_size
# this is used for the channel embedding
self.band_group_to_idx = {
group_name: idx for idx, (group_name, _) in enumerate(self.band_groups.items())
}
self.band_group_to_idx["dynamic_world"] = max(self.band_group_to_idx.values()) + 1
self.eo_patch_embed = nn.ModuleDict(
{
group_name: nn.Linear(len(group), embedding_size)
for group_name, group in self.band_groups.items()
}
)
self.dw_embed = nn.Embedding(
num_embeddings=NUM_DYNAMIC_WORLD_CLASSES + 1, embedding_dim=embedding_size
)
self.latlon_embed = nn.Linear(3, embedding_size)
self.blocks = nn.ModuleList(
[
Block(
embedding_size,
num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=nn.LayerNorm,
)
for _ in range(depth)
]
)
self.norm = nn.LayerNorm(embedding_size)
# the positional + monthly + channel embedding
self.max_sequence_length = max_sequence_length
pos_embedding_size = int(embedding_size * (1 - (channel_embed_ratio + month_embed_ratio)))
channel_embedding_size = int(embedding_size * channel_embed_ratio)
month_embedding_size = int(embedding_size * month_embed_ratio)
self.pos_embed = nn.Parameter(
torch.zeros(1, max_sequence_length, pos_embedding_size), requires_grad=False
)
month_tab = get_month_encoding_table(month_embedding_size)
self.month_embed = nn.Embedding.from_pretrained(month_tab, freeze=True)
self.channel_embed = nn.Embedding(
num_embeddings=len(self.band_groups) + 1, embedding_dim=channel_embedding_size
)
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_sinusoid_encoding_table(self.pos_embed.shape[1], self.pos_embed.shape[-1])
self.pos_embed.data.copy_(pos_embed)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@staticmethod
def cartesian(latlons: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
# an embedding is calculated for all timesteps. This is then expanded
# for each timestep in the sequence
latlon_radians = latlons * math.pi / 180
lats, lons = latlon_radians[:, 0], latlon_radians[:, 1]
x = torch.cos(lats) * torch.cos(lons)
y = torch.cos(lats) * torch.sin(lons)
z = torch.sin(lats)
return torch.stack([x, y, z], dim=-1)
@staticmethod
def mask_tokens(x, mask):
summed = mask.sum(
dim=(1, 2)
) # summed tells me the number of masked elements per batch idx
assert summed.max() == summed.min(), f"{summed.max()}, {summed.min()}"
batch_size = x.shape[0]
removed_elements_per_batch = int(summed.max() / mask.shape[2])
kept_elements_per_batch = x.shape[1] - removed_elements_per_batch
embedding_dim = x.shape[-1]
# we want the mask to just be the indices of the masked tokens
indices = repeat(torch.arange(0, x.shape[1]).long().to(x.device), "d -> b d", b=x.shape[0])
x = x[~mask.bool()].view(batch_size, kept_elements_per_batch, embedding_dim)
mask = mask[:, :, 0]
kept_indices = indices[~mask.bool()].view(batch_size, kept_elements_per_batch)
removed_indices = indices[mask.bool()].view(batch_size, removed_elements_per_batch)
return x, kept_indices, removed_indices
def forward(
self,
x: torch.Tensor,
dynamic_world: torch.Tensor,
# different from the original
# presto - latlons can be optionally ignored
latlons: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
month: Union[torch.Tensor, int] = 0,
eval_task: bool = True,
):
device = x.device
if mask is None:
mask = torch.zeros_like(x, device=x.device).float()
months = month_to_tensor(month, x.shape[0], x.shape[1], device)
month_embedding = self.month_embed(months)
positional_embedding = repeat(
self.pos_embed[:, : x.shape[1], :], "b t d -> (repeat b) t d", repeat=x.shape[0]
)
# we assume the number of masked patches is the same
# for all items in the batch. Otherwise things become a headache
all_tokens, all_masks = [], []
for channel_group, channel_idxs in self.band_groups.items():
tokens = self.eo_patch_embed[channel_group](x[:, :, channel_idxs])
channel_embedding = self.channel_embed(
torch.tensor(self.band_group_to_idx[channel_group]).long().to(device)
)
channel_embedding = repeat(channel_embedding, "d -> b t d", b=x.shape[0], t=x.shape[1])
if channel_group == "SRTM":
# for SRTM, we reduce it to a single token instead of
# a token per timestep
channel_wise_positional_embedding = torch.cat(
(
torch.zeros_like(month_embedding[:, 0:1]),
channel_embedding[:, 0:1],
torch.zeros_like(positional_embedding[:, 0:1]),
),
dim=-1,
)
indices = slice(0, 1)
else:
channel_wise_positional_embedding = torch.cat(
(month_embedding, channel_embedding, positional_embedding), dim=-1
)
indices = slice(None)
tokens = tokens[:, indices]
tokens += channel_wise_positional_embedding
all_tokens.append(tokens)
group_mask = repeat(
torch.max(mask[:, indices, channel_idxs], dim=-1)[0],
"b t -> b t d",
d=tokens.shape[-1],
)
all_masks.append(group_mask)
# then, dynamic world
tokens = self.dw_embed(dynamic_world)
channel_embedding = self.channel_embed(
torch.tensor(self.band_group_to_idx["dynamic_world"]).long().to(device)
)
channel_embedding = repeat(channel_embedding, "d -> b t d", b=x.shape[0], t=x.shape[1])
positional_embedding = torch.cat(
(month_embedding, channel_embedding, positional_embedding), dim=-1
)
tokens += positional_embedding
all_tokens.append(tokens)
# now we calculate the mask for these [b, t] tokens
group_mask = repeat(
dynamic_world == NUM_DYNAMIC_WORLD_CLASSES, "b t -> b t d", d=tokens.shape[-1]
)
all_masks.append(group_mask)
x = torch.cat(all_tokens, dim=1) # [batch, timesteps, embedding_dim]
mask = torch.cat(all_masks, dim=1) # [batch, timesteps, embedding_dim]
x, kept_indices, removed_indices = self.mask_tokens(x, mask)
# append latlon tokens
if latlons is not None:
latlon_tokens = self.latlon_embed(self.cartesian(latlons)).unsqueeze(1)
x = torch.cat((latlon_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
# mask will be a boolean of shape [batch, total_num_tokens]
if eval_task:
return self.norm(x.mean(dim=1))
return self.norm(x), kept_indices, removed_indices
class Decoder(nn.Module):
def __init__(
self,
channel_embeddings: nn.Embedding,
encoder_embed_dim=128,
decoder_embed_dim=128,
decoder_depth=2,
decoder_num_heads=8,
mlp_ratio=2,
max_sequence_length=24,
):
super().__init__()
self.band_groups = BANDS_GROUPS_IDX
# this is used for the channel embedding
self.band_group_to_idx = {
group_name: idx for idx, (group_name, _) in enumerate(self.band_groups.items())
}
self.band_group_to_idx["dynamic_world"] = max(self.band_group_to_idx.values()) + 1
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(decoder_embed_dim))
self.decoder_blocks = nn.ModuleList(
[
Block(
decoder_embed_dim,
decoder_num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=nn.LayerNorm,
)
for _ in range(decoder_depth)
]
)
self.decoder_norm = nn.LayerNorm(decoder_embed_dim)
self.eo_decoder_pred = nn.ModuleDict(
{
group_name: nn.Linear(decoder_embed_dim, len(group))
for group_name, group in self.band_groups.items()
}
)
self.dw_decoder_pred = nn.Linear(decoder_embed_dim, NUM_DYNAMIC_WORLD_CLASSES)
self.channel_embeddings = channel_embeddings
channel_embedding_dims = channel_embeddings.weight.shape[-1]
remaining_embeddings = decoder_embed_dim - channel_embedding_dims
# the positional + monthly + channel embedding
self.max_sequence_length = max_sequence_length
self.pos_embed = nn.Parameter(
torch.zeros(1, max_sequence_length, int(remaining_embeddings) // 2),
requires_grad=False,
)
month_tab = get_month_encoding_table(int(remaining_embeddings) // 2)
self.month_embed = nn.Embedding.from_pretrained(month_tab, freeze=True)
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_sinusoid_encoding_table(self.pos_embed.shape[1], self.pos_embed.shape[-1])
self.pos_embed.data.copy_(pos_embed)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def add_masked_tokens(self, x, kept_indices, removed_indices):
mask_tokens = repeat(
self.mask_token, "d -> b t d", b=x.shape[0], t=removed_indices.shape[1]
)
x = torch.cat([x, mask_tokens], dim=1)
# sort according to their indices. Shape is [batch, index]
combined_indices = torch.cat([kept_indices, removed_indices], dim=1) + 1
# 0 for latlon index
combined_indices = torch.sort(
torch.cat([torch.zeros_like(combined_indices[:, 0:1]), combined_indices], dim=1)
)[1]
# and then tile for each dimension
combined_indices = repeat(combined_indices, "b t -> b t d", d=x.shape[-1])
x = torch.gather(x, 1, combined_indices)
return x
def add_embeddings(self, x, month: Union[torch.Tensor, int]):
num_channel_groups = len(self.band_group_to_idx)
# -2 since we remove srtm and latlon, and -1 since the srtm
# channel group doesn't have timesteps
num_timesteps = int((x.shape[1] - 2) / (num_channel_groups - 1))
srtm_index = self.band_group_to_idx["SRTM"] * num_timesteps
months = month_to_tensor(month, x.shape[0], num_timesteps, x.device)
# when we expand the encodings, each channel_group gets num_timesteps
# encodings. However, there is only one SRTM token so we remove the
# excess SRTM encodings
remove_mask = torch.full(size=(num_timesteps * num_channel_groups,), fill_value=False)
remove_mask[torch.arange(num_timesteps - 1) + srtm_index] = True
month_embedding = repeat(
self.month_embed(months), "b t d -> b (repeat t) d", repeat=num_channel_groups
)
month_embedding = month_embedding[:, ~remove_mask]
month_embedding[:, srtm_index] = 0
positional_embedding = repeat(
self.pos_embed[:, :num_timesteps, :],
"b t d -> (b2 b) (t2 t) d",
b2=x.shape[0],
t2=num_channel_groups,
)
positional_embedding = positional_embedding[:, ~remove_mask]
positional_embedding[:, srtm_index] = 0
channel_embeddings = torch.repeat_interleave(
self.channel_embeddings.weight, repeats=num_timesteps, dim=0
)
channel_embeddings = repeat(channel_embeddings, "c d -> b c d", b=x.shape[0])
channel_embeddings = channel_embeddings[:, ~remove_mask]
positional_embedding = torch.cat(
(month_embedding, channel_embeddings, positional_embedding), dim=-1
)
# add the zero embedding for the latlon token
positional_embedding = torch.cat(
[torch.zeros_like(positional_embedding[:, 0:1, :]), positional_embedding], dim=1
)
x += positional_embedding
return x
def reconstruct_inputs(self, x) -> Tuple[torch.Tensor, torch.Tensor]:
# remove the latlon token
x = x[:, 1:, :]
# split into channel groups
num_channel_groups = len(self.band_group_to_idx) - 1
num_timesteps = int((x.shape[1] - 1) / num_channel_groups)
srtm_index = self.band_group_to_idx["SRTM"] * num_timesteps
srtm_token = x[:, srtm_index : srtm_index + 1, :]
mask = torch.full((x.shape[1],), True, device=x.device)
mask[torch.tensor(srtm_index)] = False
x = x[:, mask]
x = x.view(x.shape[0], num_channel_groups, num_timesteps, x.shape[-1])
eo_output, dw_output = [], None
for group_name, idx in self.band_group_to_idx.items():
if group_name == "SRTM":
eo_output.append(
repeat(
self.eo_decoder_pred[group_name](srtm_token),
"b t d -> b (t2 t) d",
t2=num_timesteps,
)
)
else:
if idx > self.band_group_to_idx["SRTM"]:
idx -= 1
group_tokens = x[:, idx]
if group_name == "dynamic_world":
dw_output = self.dw_decoder_pred(group_tokens)
else:
eo_output.append(self.eo_decoder_pred[group_name](group_tokens))
# we can just do this concatenation because the BANDS_GROUP_IDX
# is ordered
return torch.cat(eo_output, dim=-1), cast(torch.Tensor, dw_output)
def forward(self, x, kept_indices, removed_indices, month):
x = self.decoder_embed(x)
x = self.add_masked_tokens(x, kept_indices, removed_indices)
x = self.add_embeddings(x, month)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
return self.reconstruct_inputs(x)
class PrestoFineTuningModel(nn.Module):
def __init__(self, encoder, head):
super().__init__()
self.encoder: Encoder = deepcopy(encoder)
# make sure the model is trainable, since we can call
# this having called requires_grad_(False)
self.encoder.requires_grad_(True)
# but don't unfreeze the position encoder, which
# shouldn't be trainable
self.encoder.pos_embed.requires_grad_(False)
self.encoder.month_embed.requires_grad_(False)
self.head = head
def forward(
self,
x: torch.Tensor,
dynamic_world: torch.Tensor,
latlons: torch.Tensor,
mask: Optional[torch.Tensor] = None,
month: Union[torch.Tensor, int] = 0,
) -> torch.Tensor:
return self.head(
self.encoder(
x=x,
dynamic_world=dynamic_world,
latlons=latlons,
mask=mask,
month=month,
eval_task=True,
)
)
class FinetuningHead(nn.Module):
def __init__(self, hidden_size: int, num_outputs: int, regression: bool) -> None:
super().__init__()
self.hidden_size = hidden_size
self.num_outputs = num_outputs
self.regression = regression
self.linear = nn.Linear(hidden_size, num_outputs)
def forward(self, x: torch.Tensor):
x = self.linear(x)
if (not self.regression) & (self.num_outputs == 1):
x = torch.sigmoid(x)
return x
class Presto(nn.Module):
def __init__(self, encoder, decoder):
super().__init__()
self.encoder: Encoder = encoder
self.decoder: Decoder = decoder
def forward(
self,
x: torch.Tensor,
dynamic_world: torch.Tensor,
latlons: torch.Tensor,
mask: Optional[torch.Tensor] = None,
month: Union[torch.Tensor, int] = 0,
) -> torch.Tensor:
x, kept_indices, removed_indices = self.encoder(
x=x,
dynamic_world=dynamic_world,
latlons=latlons,
mask=mask,
month=month,
eval_task=False,
)
return self.decoder(x, kept_indices, removed_indices, month)
@classmethod
def construct(
cls,
encoder_embedding_size: int = 128,
channel_embed_ratio: float = 0.25,
month_embed_ratio: float = 0.25,
encoder_depth=2,
mlp_ratio=4,
encoder_num_heads=8,
decoder_embedding_size=128,
decoder_depth=2,
decoder_num_heads=8,
max_sequence_length=24,
):
encoder = Encoder(
embedding_size=encoder_embedding_size,
channel_embed_ratio=channel_embed_ratio,
month_embed_ratio=month_embed_ratio,
depth=encoder_depth,
mlp_ratio=mlp_ratio,
num_heads=encoder_num_heads,
max_sequence_length=max_sequence_length,
)
decoder = Decoder(
channel_embeddings=encoder.channel_embed,
encoder_embed_dim=encoder_embedding_size,
decoder_embed_dim=decoder_embedding_size,
decoder_depth=decoder_depth,
decoder_num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
max_sequence_length=max_sequence_length,
)
return cls(encoder, decoder)
def construct_finetuning_model(
self,
num_outputs: int,
regression: bool = False,
):
head = FinetuningHead(
num_outputs=num_outputs,
hidden_size=self.encoder.embedding_size,
regression=regression,
)
model = PrestoFineTuningModel(self.encoder, head).to(self.encoder.pos_embed.device)
model.train()
return model
@classmethod
def load_pretrained(cls):
model = cls.construct()
model.load_state_dict(torch.load(DEFAULT_MODEL_PATH, map_location=device))
return model
|