Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 32,739 Bytes
a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 a8fb1c5 4649353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
import gradio as gr
import requests
import json
import os
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from openai import OpenAI
from bs4 import BeautifulSoup
import re
import pathlib
import sqlite3
import pytz
# List of target companies/keywords
KOREAN_COMPANIES = [
"NVIDIA",
"ALPHABET",
"APPLE",
"TESLA",
"AMAZON",
"MICROSOFT",
"META",
"INTEL",
"SAMSUNG",
"HYNIX",
"BITCOIN",
"crypto",
"stock",
"Economics",
"Finance",
"investing"
]
def convert_to_seoul_time(timestamp_str):
"""
Convert a given timestamp string (UTC) to Seoul time (KST).
"""
try:
dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
seoul_tz = pytz.timezone('Asia/Seoul')
seoul_time = seoul_tz.localize(dt)
return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
except Exception as e:
print(f"Time conversion error: {str(e)}")
return timestamp_str
def analyze_sentiment_batch(articles, client):
"""
Perform a comprehensive sentiment analysis of the news articles using the OpenAI API.
"""
try:
# Combine all articles into a single text
combined_text = "\n\n".join([
f"Title: {article.get('title', '')}\nContent: {article.get('snippet', '')}"
for article in articles
])
prompt = f"""Please perform an overall sentiment analysis of the following collection of news articles:
News content:
{combined_text}
Please follow this format:
1. Overall Sentiment: [Positive/Negative/Neutral]
2. Key Positive Factors:
- [Item1]
- [Item2]
3. Key Negative Factors:
- [Item1]
- [Item2]
4. Summary: [Detailed explanation]
"""
response = client.chat.completions.create(
model="CohereForAI/c4ai-command-r-plus-08-2024",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=1000
)
return response.choices[0].message.content
except Exception as e:
return f"Sentiment analysis failed: {str(e)}"
# Initialize the database
def init_db():
"""
Initialize the SQLite database (search_results.db) if it doesn't already exist.
"""
db_path = pathlib.Path("search_results.db")
conn = sqlite3.connect(db_path)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS searches
(id INTEGER PRIMARY KEY AUTOINCREMENT,
keyword TEXT,
country TEXT,
results TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
def save_to_db(keyword, country, results):
"""
Save the search results for a specific (keyword, country) combination into the database.
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
seoul_tz = pytz.timezone('Asia/Seoul')
now = datetime.now(seoul_tz)
timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
c.execute("""INSERT INTO searches
(keyword, country, results, timestamp)
VALUES (?, ?, ?, ?)""",
(keyword, country, json.dumps(results), timestamp))
conn.commit()
conn.close()
def load_from_db(keyword, country):
"""
Load the most recent search results for a specific (keyword, country) combination from the database.
Returns the data and the timestamp.
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
c.execute(
"SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
(keyword, country)
)
result = c.fetchone()
conn.close()
if result:
return json.loads(result[0]), convert_to_seoul_time(result[1])
return None, None
def display_results(articles):
"""
Convert a list of news articles into a Markdown string for display.
"""
output = ""
for idx, article in enumerate(articles, 1):
output += f"### {idx}. {article['title']}\n"
output += f"Source: {article['channel']}\n"
output += f"Time: {article['time']}\n"
output += f"Link: {article['link']}\n"
output += f"Summary: {article['snippet']}\n\n"
return output
########################################
# 1) Search => Articles + Analysis, then save to DB
########################################
def search_company(company):
"""
For a single company (or keyword), search US news.
1) Retrieve a list of articles
2) Perform sentiment analysis
3) Save results to DB
4) Return (articles + analysis) in a single output.
"""
error_message, articles = serphouse_search(company, "United States")
if not error_message and articles:
# Perform sentiment analysis
analysis = analyze_sentiment_batch(articles, client)
# Prepare data to save in DB
store_dict = {
"articles": articles,
"analysis": analysis
}
save_to_db(company, "United States", store_dict)
# Prepare output for display
output = display_results(articles)
output += f"\n\n### Analysis Report\n{analysis}\n"
return output
return f"No search results found for {company}."
########################################
# 2) Load => Return articles + analysis from DB
########################################
def load_company(company):
"""
Load the most recent US news search results for the given company (or keyword) from the database,
and return the articles + analysis in a single output.
"""
data, timestamp = load_from_db(company, "United States")
if data:
articles = data.get("articles", [])
analysis = data.get("analysis", "")
output = f"### {company} Search Results\nLast Updated: {timestamp}\n\n"
output += display_results(articles)
output += f"\n\n### Analysis Report\n{analysis}\n"
return output
return f"No saved results for {company}."
########################################
# 3) Updated show_stats() with new title
########################################
def show_stats():
"""
For each company in KOREAN_COMPANIES:
- Retrieve the most recent timestamp in DB
- Number of articles
- Sentiment analysis result
Return these in a report format.
Title changed to: "EarnBOT Analysis Report"
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
output = "## EarnBOT Analysis Report\n\n"
data_list = []
for company in KOREAN_COMPANIES:
c.execute("""
SELECT results, timestamp
FROM searches
WHERE keyword = ?
ORDER BY timestamp DESC
LIMIT 1
""", (company,))
row = c.fetchone()
if row:
results_json, timestamp = row
data_list.append((company, timestamp, results_json))
conn.close()
def analyze_data(item):
comp, tstamp, results_json = item
data = json.loads(results_json)
articles = data.get("articles", [])
analysis = data.get("analysis", "")
count_articles = len(articles)
return (comp, tstamp, count_articles, analysis)
results_list = []
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(analyze_data, dl) for dl in data_list]
for future in as_completed(futures):
results_list.append(future.result())
for comp, tstamp, count, analysis in results_list:
seoul_time = convert_to_seoul_time(tstamp)
output += f"### {comp}\n"
output += f"- Last updated: {seoul_time}\n"
output += f"- Number of articles stored: {count}\n\n"
if analysis:
output += "#### News Sentiment Analysis\n"
output += f"{analysis}\n\n"
output += "---\n\n"
return output
def search_all_companies():
"""
Search all companies in KOREAN_COMPANIES (in parallel),
perform sentiment analysis + save to DB => return Markdown of all results.
"""
overall_result = "# [Search Results for All Companies]\n\n"
def do_search(comp):
return comp, search_company(comp)
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
for future in as_completed(futures):
comp, res_text = future.result()
overall_result += f"## {comp}\n"
overall_result += res_text + "\n\n"
return overall_result
def load_all_companies():
"""
Load articles + analysis for all companies in KOREAN_COMPANIES from the DB => return Markdown.
"""
overall_result = "# [All Companies Data Output]\n\n"
for comp in KOREAN_COMPANIES:
overall_result += f"## {comp}\n"
overall_result += load_company(comp)
overall_result += "\n"
return overall_result
def full_summary_report():
"""
1) Search all companies (in parallel) -> 2) Load results -> 3) Show sentiment analysis stats
Return a combined report with all three steps.
"""
# 1) Search all companies => store to DB
search_result_text = search_all_companies()
# 2) Load all results => from DB
load_result_text = load_all_companies()
# 3) Show stats => EarnBOT Analysis Report
stats_text = show_stats()
combined_report = (
"# Full Analysis Summary Report\n\n"
"Executed in the following order:\n"
"1. Search all companies (parallel) + sentiment analysis => 2. Load results from DB => 3. Show overall sentiment analysis stats\n\n"
f"{search_result_text}\n\n"
f"{load_result_text}\n\n"
"## [Overall Sentiment Analysis Stats]\n\n"
f"{stats_text}"
)
return combined_report
########################################
# Additional feature: User custom search
########################################
def search_custom(query, country):
"""
For a user-provided (query, country):
1) Search + sentiment analysis => save to DB
2) Load from DB => display articles + analysis
"""
error_message, articles = serphouse_search(query, country)
if error_message:
return f"An error occurred: {error_message}"
if not articles:
return "No results were found for your query."
# 1) Perform analysis
analysis = analyze_sentiment_batch(articles, client)
# 2) Save to DB
save_data = {
"articles": articles,
"analysis": analysis
}
save_to_db(query, country, save_data)
# 3) Reload from DB
loaded_data, timestamp = load_from_db(query, country)
if not loaded_data:
return "Failed to load data from DB."
# 4) Prepare final output
out = f"## [Custom Search Results]\n\n"
out += f"**Keyword**: {query}\n\n"
out += f"**Country**: {country}\n\n"
out += f"**Timestamp**: {timestamp}\n\n"
arts = loaded_data.get("articles", [])
analy = loaded_data.get("analysis", "")
out += display_results(arts)
out += f"### News Sentiment Analysis\n{analy}\n"
return out
########################################
# API Authentication
########################################
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
API_KEY = os.getenv("SERPHOUSE_API_KEY")
########################################
# Country-specific settings
########################################
COUNTRY_LANGUAGES = {
"United States": "en",
"KOREA": "ko",
"United Kingdom": "en",
"Taiwan": "zh-TW",
"Canada": "en",
"Australia": "en",
"Germany": "de",
"France": "fr",
"Japan": "ja",
"China": "zh",
"India": "hi",
"Brazil": "pt",
"Mexico": "es",
"Russia": "ru",
"Italy": "it",
"Spain": "es",
"Netherlands": "nl",
"Singapore": "en",
"Hong Kong": "zh-HK",
"Indonesia": "id",
"Malaysia": "ms",
"Philippines": "tl",
"Thailand": "th",
"Vietnam": "vi",
"Belgium": "nl",
"Denmark": "da",
"Finland": "fi",
"Ireland": "en",
"Norway": "no",
"Poland": "pl",
"Sweden": "sv",
"Switzerland": "de",
"Austria": "de",
"Czech Republic": "cs",
"Greece": "el",
"Hungary": "hu",
"Portugal": "pt",
"Romania": "ro",
"Turkey": "tr",
"Israel": "he",
"Saudi Arabia": "ar",
"United Arab Emirates": "ar",
"South Africa": "en",
"Argentina": "es",
"Chile": "es",
"Colombia": "es",
"Peru": "es",
"Venezuela": "es",
"New Zealand": "en",
"Bangladesh": "bn",
"Pakistan": "ur",
"Egypt": "ar",
"Morocco": "ar",
"Nigeria": "en",
"Kenya": "sw",
"Ukraine": "uk",
"Croatia": "hr",
"Slovakia": "sk",
"Bulgaria": "bg",
"Serbia": "sr",
"Estonia": "et",
"Latvia": "lv",
"Lithuania": "lt",
"Slovenia": "sl",
"Luxembourg": "Luxembourg",
"Malta": "Malta",
"Cyprus": "Cyprus",
"Iceland": "Iceland"
}
COUNTRY_LOCATIONS = {
"United States": "United States",
"KOREA": "kr",
"United Kingdom": "United Kingdom",
"Taiwan": "Taiwan",
"Canada": "Canada",
"Australia": "Australia",
"Germany": "Germany",
"France": "France",
"Japan": "Japan",
"China": "China",
"India": "India",
"Brazil": "Brazil",
"Mexico": "Mexico",
"Russia": "Russia",
"Italy": "Italy",
"Spain": "Spain",
"Netherlands": "Netherlands",
"Singapore": "Singapore",
"Hong Kong": "Hong Kong",
"Indonesia": "Indonesia",
"Malaysia": "Malaysia",
"Philippines": "Philippines",
"Thailand": "Thailand",
"Vietnam": "Vietnam",
"Belgium": "Belgium",
"Denmark": "Denmark",
"Finland": "Finland",
"Ireland": "Ireland",
"Norway": "Norway",
"Poland": "Poland",
"Sweden": "Sweden",
"Switzerland": "Switzerland",
"Austria": "Austria",
"Czech Republic": "Czech Republic",
"Greece": "Greece",
"Hungary": "Hungary",
"Portugal": "Portugal",
"Romania": "Romania",
"Turkey": "Turkey",
"Israel": "Israel",
"Saudi Arabia": "Saudi Arabia",
"United Arab Emirates": "United Arab Emirates",
"South Africa": "South Africa",
"Argentina": "Argentina",
"Chile": "Chile",
"Colombia": "Colombia",
"Peru": "Peru",
"Venezuela": "Venezuela",
"New Zealand": "New Zealand",
"Bangladesh": "Bangladesh",
"Pakistan": "Pakistan",
"Egypt": "Egypt",
"Morocco": "Morocco",
"Nigeria": "Nigeria",
"Kenya": "Kenya",
"Ukraine": "Ukraine",
"Croatia": "Croatia",
"Slovakia": "Slovakia",
"Bulgaria": "Bulgaria",
"Serbia": "Serbia",
"Estonia": "et",
"Latvia": "lv",
"Lithuania": "lt",
"Slovenia": "sl",
"Luxembourg": "Luxembourg",
"Malta": "Malta",
"Cyprus": "Cyprus",
"Iceland": "Iceland"
}
@lru_cache(maxsize=100)
def translate_query(query, country):
"""
Use the unofficial Google Translation API to translate the query into the target country's language.
If the query is already in English, or if translation fails, return the original query.
"""
try:
if is_english(query):
return query
if country in COUNTRY_LANGUAGES:
if country == "South Korea":
return query
target_lang = COUNTRY_LANGUAGES[country]
url = "https://translate.googleapis.com/translate_a/single"
params = {
"client": "gtx",
"sl": "auto",
"tl": target_lang,
"dt": "t",
"q": query
}
session = requests.Session()
retries = Retry(total=3, backoff_factor=0.5)
session.mount('https://', HTTPAdapter(max_retries=retries))
response = session.get(url, params=params, timeout=(5, 10))
translated_text = response.json()[0][0][0]
return translated_text
return query
except Exception as e:
print(f"Translation error: {str(e)}")
return query
def is_english(text):
"""
Check if a string is (mostly) English by verifying character code ranges.
"""
return all(ord(char) < 128 for char in text.replace(' ', '').replace('-', '').replace('_', ''))
def search_serphouse(query, country, page=1, num_result=10):
"""
Send a real-time search request to the SerpHouse API,
specifying the 'news' tab (sort_by=date) for the given query.
Returns a dict with 'results' or 'error'.
"""
url = "https://api.serphouse.com/serp/live"
now = datetime.utcnow()
yesterday = now - timedelta(days=1)
date_range = f"{yesterday.strftime('%Y-%m-%d')},{now.strftime('%Y-%m-%d')}"
translated_query = translate_query(query, country)
payload = {
"data": {
"q": translated_query,
"domain": "google.com",
"loc": COUNTRY_LOCATIONS.get(country, "United States"),
"lang": COUNTRY_LANGUAGES.get(country, "en"),
"device": "desktop",
"serp_type": "news",
"page": str(page),
"num": "100",
"date_range": date_range,
"sort_by": "date"
}
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {API_KEY}"
}
try:
session = requests.Session()
retries = Retry(
total=5,
backoff_factor=1,
status_forcelist=[500, 502, 503, 504, 429],
allowed_methods=["POST"]
)
adapter = HTTPAdapter(max_retries=retries)
session.mount('http://', adapter)
session.mount('https://', adapter)
response = session.post(
url,
json=payload,
headers=headers,
timeout=(30, 30)
)
response.raise_for_status()
return {"results": response.json(), "translated_query": translated_query}
except requests.exceptions.Timeout:
return {
"error": "Search timed out. Please try again later.",
"translated_query": query
}
except requests.exceptions.RequestException as e:
return {
"error": f"Error during search: {str(e)}",
"translated_query": query
}
except Exception as e:
return {
"error": f"Unexpected error occurred: {str(e)}",
"translated_query": query
}
def format_results_from_raw(response_data):
"""
Process the SerpHouse API response data and return (error_message, article_list).
"""
if "error" in response_data:
return "Error: " + response_data["error"], []
try:
results = response_data["results"]
translated_query = response_data["translated_query"]
news_results = results.get('results', {}).get('results', {}).get('news', [])
if not news_results:
return "No search results found.", []
# Filter out Korean domains and Korean keywords (example filtering)
korean_domains = [
'.kr', 'korea', 'korean', 'yonhap', 'hankyung', 'chosun',
'donga', 'joins', 'hani', 'koreatimes', 'koreaherald'
]
korean_keywords = [
'korea', 'korean', 'seoul', 'busan', 'incheon', 'daegu',
'gwangju', 'daejeon', 'ulsan', 'sejong'
]
filtered_articles = []
for idx, result in enumerate(news_results, 1):
url = result.get("url", result.get("link", "")).lower()
title = result.get("title", "").lower()
channel = result.get("channel", result.get("source", "")).lower()
is_korean_content = (
any(domain in url or domain in channel for domain in korean_domains) or
any(keyword in title for keyword in korean_keywords)
)
# Exclude Korean content
if not is_korean_content:
filtered_articles.append({
"index": idx,
"title": result.get("title", "No Title"),
"link": url,
"snippet": result.get("snippet", "No Content"),
"channel": result.get("channel", result.get("source", "Unknown")),
"time": result.get("time", result.get("date", "Unknown Time")),
"image_url": result.get("img", result.get("thumbnail", "")),
"translated_query": translated_query
})
return "", filtered_articles
except Exception as e:
return f"Error processing results: {str(e)}", []
def serphouse_search(query, country):
"""
Helper function to search and then format results.
Returns (error_message, article_list).
"""
response_data = search_serphouse(query, country)
return format_results_from_raw(response_data)
# Refined, modern, and sleek custom CSS
css = """
body {
background: linear-gradient(to bottom right, #f9fafb, #ffffff);
font-family: 'Arial', sans-serif;
}
/* Hide default Gradio footer */
footer {
visibility: hidden;
}
/* Header/Status area */
#status_area {
background: rgba(255, 255, 255, 0.9);
padding: 15px;
border-bottom: 1px solid #ddd;
margin-bottom: 20px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
/* Results area */
#results_area {
padding: 10px;
margin-top: 10px;
}
/* Tabs style */
.tabs {
border-bottom: 2px solid #ddd !important;
margin-bottom: 20px !important;
}
.tab-nav {
border-bottom: none !important;
margin-bottom: 0 !important;
}
.tab-nav button {
font-weight: bold !important;
padding: 10px 20px !important;
background-color: #f0f0f0 !important;
border: 1px solid #ccc !important;
border-radius: 5px !important;
margin-right: 5px !important;
}
.tab-nav button.selected {
border-bottom: 2px solid #1f77b4 !important;
background-color: #e6f2fa !important;
color: #1f77b4 !important;
}
/* Status message styling */
#status_area .markdown-text {
font-size: 1.1em;
color: #2c3e50;
padding: 10px 0;
}
/* Main container grouping */
.group {
border: 1px solid #eee;
padding: 15px;
margin-bottom: 15px;
border-radius: 5px;
background: white;
transition: all 0.3s ease;
opacity: 0;
transform: translateY(20px);
}
.group.visible {
opacity: 1;
transform: translateY(0);
}
/* Buttons */
.primary-btn {
background: #1f77b4 !important;
border: none !important;
color: #fff !important;
border-radius: 5px !important;
padding: 10px 20px !important;
cursor: pointer !important;
}
.primary-btn:hover {
background: #155a8c !important;
}
.secondary-btn {
background: #f0f0f0 !important;
border: 1px solid #ccc !important;
color: #333 !important;
border-radius: 5px !important;
padding: 10px 20px !important;
cursor: pointer !important;
}
.secondary-btn:hover {
background: #e0e0e0 !important;
}
/* Input fields */
.textbox {
border: 1px solid #ddd !important;
border-radius: 4px !important;
}
/* Progress bar container */
.progress-container {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 6px;
background: #e0e0e0;
z-index: 1000;
}
/* Progress bar */
.progress-bar {
height: 100%;
background: linear-gradient(90deg, #2196F3, #00BCD4);
box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
transition: width 0.3s ease;
animation: progress-glow 1.5s ease-in-out infinite;
}
/* Progress text */
.progress-text {
position: fixed;
top: 8px;
left: 50%;
transform: translateX(-50%);
background: #333;
color: white;
padding: 4px 12px;
border-radius: 15px;
font-size: 14px;
z-index: 1001;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
/* Progress bar animation */
@keyframes progress-glow {
0% {
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
}
50% {
box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
}
100% {
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
}
}
/* Loading state */
.loading {
opacity: 0.7;
pointer-events: none;
transition: opacity 0.3s ease;
}
/* Responsive design for smaller screens */
@media (max-width: 768px) {
.group {
padding: 10px;
margin-bottom: 15px;
}
.progress-text {
font-size: 12px;
padding: 3px 10px;
}
}
/* Example section styling */
.examples-table {
margin-top: 10px !important;
margin-bottom: 20px !important;
}
.examples-table button {
background-color: #f0f0f0 !important;
border: 1px solid #ddd !important;
border-radius: 4px !important;
padding: 5px 10px !important;
margin: 2px !important;
transition: all 0.3s ease !important;
}
.examples-table button:hover {
background-color: #e0e0e0 !important;
transform: translateY(-1px) !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
}
.examples-table .label {
font-weight: bold !important;
color: #444 !important;
margin-bottom: 5px !important;
}
"""
# --- Gradio Interface (UI portion only) ---
with gr.Blocks(css=css, title="NewsAI Service") as iface:
# Initialize the database first (keeping the call to init_db(), unchanged)
init_db()
with gr.Tabs():
with gr.Tab("MoneyRadar"):
# Added usage instructions and feature explanations here:
gr.Markdown(
"""
## MoneyRadar: Implies scanning the market to spot money-making opportunities.
**How to Use This Service**:
1. **Custom Search**: Enter any keyword and choose a target country to fetch the latest news. The system automatically performs sentiment analysis and stores results in the database.
2. **Generate Full Analysis Summary Report**: This will automatically:
- Search all predefined companies (in parallel),
- Store the articles and sentiment analysis,
- Display a combined overall report.
3. **Individual Companies**:
- **Search**: Fetch and analyze the latest news from Google (for the chosen company).
- **Load from DB**: Retrieve the most recent saved news and sentiment analysis from the local database.
**Features**:
- **Real-time News Scraping**: Retrieves fresh articles from multiple regions.
- **Advanced Sentiment Analysis**: Uses state-of-the-art NLP models via the OpenAI API.
- **Data Persistence**: Automatically saves and retrieves search results in a local SQLite database for quick reference.
- **Flexible**: Ability to search any keyword/country or select from predefined Big Tech & finance-related terms.
---
"""
)
# User custom search section
with gr.Group():
gr.Markdown("### Custom Search")
with gr.Row():
with gr.Column():
user_input = gr.Textbox(
label="Enter your keyword",
placeholder="e.g., Apple, Samsung, etc.",
elem_classes="textbox"
)
with gr.Column():
country_selection = gr.Dropdown(
choices=list(COUNTRY_LOCATIONS.keys()),
value="United States",
label="Select Country"
)
with gr.Column():
custom_search_btn = gr.Button(
"Search",
variant="primary",
elem_classes="primary-btn"
)
custom_search_output = gr.Markdown()
custom_search_btn.click(
fn=search_custom,
inputs=[user_input, country_selection],
outputs=custom_search_output
)
# Button to generate a full report
with gr.Row():
full_report_btn = gr.Button(
"Generate Full Analysis Summary Report",
variant="primary",
elem_classes="primary-btn"
)
full_report_display = gr.Markdown()
full_report_btn.click(
fn=full_summary_report,
outputs=full_report_display
)
# Individual search/load for companies in KOREAN_COMPANIES
with gr.Column():
for i in range(0, len(KOREAN_COMPANIES), 2):
with gr.Row():
# Left column
with gr.Column():
company = KOREAN_COMPANIES[i]
with gr.Group():
gr.Markdown(f"### {company}")
with gr.Row():
search_btn = gr.Button(
"Search",
variant="primary",
elem_classes="primary-btn"
)
load_btn = gr.Button(
"Load from DB",
variant="secondary",
elem_classes="secondary-btn"
)
result_display = gr.Markdown()
search_btn.click(
fn=lambda c=company: search_company(c),
outputs=result_display
)
load_btn.click(
fn=lambda c=company: load_company(c),
outputs=result_display
)
# Right column (if exists)
if i + 1 < len(KOREAN_COMPANIES):
with gr.Column():
company = KOREAN_COMPANIES[i + 1]
with gr.Group():
gr.Markdown(f"### {company}")
with gr.Row():
search_btn = gr.Button(
"Search",
variant="primary",
elem_classes="primary-btn"
)
load_btn = gr.Button(
"Load from DB",
variant="secondary",
elem_classes="secondary-btn"
)
result_display = gr.Markdown()
search_btn.click(
fn=lambda c=company: search_company(c),
outputs=result_display
)
load_btn.click(
fn=lambda c=company: load_company(c),
outputs=result_display
)
# Launch the Gradio interface
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
ssl_verify=False,
show_error=True
)
|