File size: 4,821 Bytes
8e56712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import graphviz
import json
from tempfile import NamedTemporaryFile
import os
from graph_generator_utils import add_nodes_and_edges
def generate_radial_diagram(json_input: str, output_format: str) -> str:
"""
Generates a radial (center-expanded) diagram from JSON input.
Args:
json_input (str): A JSON string describing the radial diagram structure.
It must follow the Expected JSON Format Example below.
Expected JSON Format Example:
{
"central_node": "AI Core Concepts & Domains",
"nodes": [
{
"id": "foundational_ml",
"label": "Foundational ML",
"relationship": "builds on",
"subnodes": [
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
]
},
{
"id": "dl_architectures",
"label": "Deep Learning Arch.",
"relationship": "evolved from",
"subnodes": [
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
]
},
{
"id": "major_applications",
"label": "Major AI Applications",
"relationship": "applied in",
"subnodes": [
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
]
},
{
"id": "ethical_concerns",
"label": "Ethical AI Concerns",
"relationship": "addresses",
"subnodes": [
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
]
},
{
"id": "future_trends",
"label": "Future AI Trends",
"relationship": "looking at",
"subnodes": [
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
]
}
]
}
Returns:
str: The filepath to the generated PNG image file.
"""
try:
if not json_input.strip():
return "Error: Empty input"
data = json.loads(json_input)
if 'central_node' not in data or 'nodes' not in data:
raise ValueError("Missing required fields: central_node or nodes")
# ํ๊ธ ํฐํธ ์ค์
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
korean_font = 'NanumGothic-Regular'
dot = graphviz.Digraph(
name='RadialDiagram',
format='png',
engine='neato', # Use 'neato' or 'fdp' for radial/force-directed layout
graph_attr={
'overlap': 'false', # Prevent node overlap
'splines': 'true', # Smooth splines for edges
'bgcolor': 'white', # White background
'pad': '0.5', # Padding around the graph
'layout': 'neato', # Explicitly set layout engine for consistency
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
},
node_attr={
'fixedsize': 'false', # Allow nodes to resize based on content
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
},
edge_attr={
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
}
)
base_color = '#19191a' # Hardcoded base color
dot.node(
'central',
data['central_node'],
shape='box', # Rectangular shape
style='filled,rounded', # Filled and rounded corners
fillcolor=base_color, # Darkest color
fontcolor='white', # White text for dark background
fontsize='16', # Larger font for central node
fontname=korean_font # ํ๊ธ ํฐํธ ๋ช
์์ ์ง์
)
add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
dot.render(tmp.name, format=output_format, cleanup=True)
return f"{tmp.name}.{output_format}"
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}" |