File size: 11,779 Bytes
e3e9b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import openai
import os
from typing import List, Dict
import json
import requests
from datetime import datetime
import sys
import time

class EnhancedRecursiveThinkingChat:
    def __init__(self, api_key: str = None, model: str = "mistralai/mistral-small-3.1-24b-instruct:free", temperature: float = 0.7):
        """Initialize with OpenRouter API."""
        self.api_key = api_key or os.getenv("OPENROUTER_API_KEY")
        self.model = model
        self.temperature = temperature
        self.base_url = "https://openrouter.ai/api/v1/chat/completions"
        self.headers = {
            "Authorization": f"Bearer {self.api_key}",
            "HTTP-Referer": "http://localhost:3000",
            "X-Title": "Recursive Thinking Chat",
            "Content-Type": "application/json"
        }
        self.conversation_history = []
        self.full_thinking_log = []
    
    def _call_api(self, messages: List[Dict], temperature: float = None, stream: bool = True) -> str:
        """Make an API call to OpenRouter with streaming support."""
        if temperature is None:
            temperature = self.temperature
            
        payload = {
            "model": self.model,
            "messages": messages,
            "temperature": temperature,
            "stream": stream,
            "reasoning": {
                "max_tokens": 10386,
            }
        }
        
        try:
            response = requests.post(self.base_url, headers=self.headers, json=payload, stream=stream)
            response.raise_for_status()
            
            if stream:
                full_response = ""
                for line in response.iter_lines():
                    if line:
                        line = line.decode('utf-8')
                        if line.startswith("data: "):
                            line = line[6:]
                            if line.strip() == "[DONE]":
                                break
                            try:
                                chunk = json.loads(line)
                                if "choices" in chunk and len(chunk["choices"]) > 0:
                                    delta = chunk["choices"][0].get("delta", {})
                                    content = delta.get("content", "")
                                    if content:
                                        full_response += content
                                        print(content, end="", flush=True)
                            except json.JSONDecodeError:
                                continue
                print()  # New line after streaming
                return full_response
            else:
                return response.json()['choices'][0]['message']['content'].strip()
        except Exception as e:
            print(f"API Error: {e}")
            return "Error: Could not get response from API"
    
    def _determine_thinking_rounds(self, prompt: str) -> int:
        """Let the model decide how many rounds of thinking are needed."""
        meta_prompt = f"""Given this message: "{prompt}"
How many rounds of iterative thinking (1-5) would be optimal to generate the best response?
Consider the complexity and nuance required.
Respond with just a number between 1 and 5."""
        
        messages = [{"role": "user", "content": meta_prompt}]
        print("\n=== DETERMINING THINKING ROUNDS ===")
        response = self._call_api(messages, temperature=0.3, stream=True)
        print("=" * 50 + "\n")
        
        try:
            rounds = int(''.join(filter(str.isdigit, response)))
            return min(max(rounds, 1), 5)
        except:
            return 3
    
    def _generate_alternatives(self, base_response: str, prompt: str, num_alternatives: int = 3) -> List[str]:
        """Generate alternative responses."""
        alternatives = []
        
        for i in range(num_alternatives):
            print(f"\n=== GENERATING ALTERNATIVE {i+1} ===")
            alt_prompt = f"""Original message: {prompt}
Current response: {base_response}
Generate an alternative response that might be better. Be creative and consider different approaches.
Alternative response:"""
            
            messages = self.conversation_history + [{"role": "user", "content": alt_prompt}]
            alternative = self._call_api(messages, temperature=0.7 + i * 0.1, stream=True)
            alternatives.append(alternative)
            print("=" * 50)
        
        return alternatives
    
    def _evaluate_responses(self, prompt: str, current_best: str, alternatives: List[str]) -> tuple[str, str]:
        """Evaluate responses and select the best one."""
        print("\n=== EVALUATING RESPONSES ===")
        eval_prompt = f"""Original message: {prompt}
Evaluate these responses and choose the best one:
Current best: {current_best}
Alternatives:
{chr(10).join([f"{i+1}. {alt}" for i, alt in enumerate(alternatives)])}
Which response best addresses the original message? Consider accuracy, clarity, and completeness.
First, respond with ONLY 'current' or a number (1-{len(alternatives)}).
Then on a new line, explain your choice in one sentence."""
        
        messages = [{"role": "user", "content": eval_prompt}]
        evaluation = self._call_api(messages, temperature=0.2, stream=True)
        print("=" * 50)
        
        # Better parsing
        lines = [line.strip() for line in evaluation.split('\n') if line.strip()]
        choice = 'current'
        explanation = "No explanation provided"
        
        if lines:
            first_line = lines[0].lower()
            if 'current' in first_line:
                choice = 'current'
            else:
                for char in first_line:
                    if char.isdigit():
                        choice = char
                        break
            
            if len(lines) > 1:
                explanation = ' '.join(lines[1:])
        
        if choice == 'current':
            return current_best, explanation
        else:
            try:
                index = int(choice) - 1
                if 0 <= index < len(alternatives):
                    return alternatives[index], explanation
            except:
                pass
        
        return current_best, explanation
    
    def think_and_respond(self, user_input: str, verbose: bool = True) -> Dict:
        """Process user input with recursive thinking."""
        print("\n" + "=" * 50)
        print("πŸ€” RECURSIVE THINKING PROCESS STARTING")
        print("=" * 50)
        
        thinking_rounds = self._determine_thinking_rounds(user_input)
        
        if verbose:
            print(f"\nπŸ€” Thinking... ({thinking_rounds} rounds needed)")
        
        # Initial response
        print("\n=== GENERATING INITIAL RESPONSE ===")
        messages = self.conversation_history + [{"role": "user", "content": user_input}]
        current_best = self._call_api(messages, stream=True)
        print("=" * 50)
        
        thinking_history = [{"round": 0, "response": current_best, "selected": True}]
        
        # Iterative improvement
        for round_num in range(1, thinking_rounds + 1):
            if verbose:
                print(f"\n=== ROUND {round_num}/{thinking_rounds} ===")
            
            # Generate alternatives
            alternatives = self._generate_alternatives(current_best, user_input)
            
            # Store alternatives in history
            for i, alt in enumerate(alternatives):
                thinking_history.append({
                    "round": round_num,
                    "response": alt,
                    "selected": False,
                    "alternative_number": i + 1
                })
            
            # Evaluate and select best
            new_best, explanation = self._evaluate_responses(user_input, current_best, alternatives)
            
            # Update selection in history
            if new_best != current_best:
                for item in thinking_history:
                    if item["round"] == round_num and item["response"] == new_best:
                        item["selected"] = True
                        item["explanation"] = explanation
                current_best = new_best
                if verbose:
                    print(f"\n βœ“ Selected alternative: {explanation}")
            else:
                for item in thinking_history:
                    if item["selected"] and item["response"] == current_best:
                        item["explanation"] = explanation
                        break
                if verbose:
                    print(f"\n βœ“ Kept current response: {explanation}")
        
        # Add to conversation history
        self.conversation_history.append({"role": "user", "content": user_input})
        self.conversation_history.append({"role": "assistant", "content": current_best})
        
        # Keep conversation history manageable
        if len(self.conversation_history) > 10:
            self.conversation_history = self.conversation_history[-10:]
        
        print("\n" + "=" * 50)
        print("🎯 FINAL RESPONSE SELECTED")
        print("=" * 50)
        
        return {
            "response": current_best,
            "thinking_rounds": thinking_rounds,
            "thinking_history": thinking_history
        }
    
    def save_full_log(self, filename: str = None):
        """Save the full thinking process log."""
        if filename is None:
            filename = f"full_thinking_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
        
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump({
                "conversation": self.conversation_history,
                "full_thinking_log": self.full_thinking_log,
                "timestamp": datetime.now().isoformat()
            }, f, indent=2, ensure_ascii=False)
        
        print(f"Full thinking log saved to {filename}")
    
    def save_conversation(self, filename: str = None):
        """Save the conversation and thinking history."""
        if filename is None:
            filename = f"chat_history_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
        
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump({
                "conversation": self.conversation_history,
                "timestamp": datetime.now().isoformat()
            }, f, indent=2, ensure_ascii=False)
        
        print(f"Conversation saved to {filename}")

# For direct use as a script
if __name__ == "__main__":
    print("πŸ€– Enhanced Recursive Thinking Chat")
    print("=" * 50)
    
    # Get API key
    api_key = input("Enter your OpenRouter API key (or press Enter to use env variable): ").strip()
    
    if not api_key:
        api_key = os.getenv("OPENROUTER_API_KEY")
        if not api_key:
            print("Error: No API key provided and OPENROUTER_API_KEY not found in environment")
            sys.exit(1)
    
    # Initialize chat
    chat = EnhancedRecursiveThinkingChat(api_key=api_key)
    
    print("\nChat initialized! Type 'exit' to quit, 'save' to save conversation.")
    print("The AI will think recursively before each response.\n")
    
    while True:
        user_input = input("You: ").strip()
        
        if user_input.lower() == 'exit':
            break
        elif user_input.lower() == 'save':
            chat.save_conversation()
            continue
        elif user_input.lower() == 'save full':
            chat.save_full_log()
            continue
        elif not user_input:
            continue
        
        # Get response with thinking process
        result = chat.think_and_respond(user_input)
        print(f"\nπŸ€– AI FINAL RESPONSE: {result['response']}\n")