File size: 70,774 Bytes
c3be39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
import copy
import functools
import warnings
from dataclasses import dataclass
from typing import (
    Any,
    cast,
    Dict,
    Iterable,
    Iterator,
    List,
    NamedTuple,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.fsdp._common_utils import (
    _apply_to_modules,
    _FSDPState,
    _get_module_fsdp_state_if_fully_sharded_module,
    _get_param_to_fqns,
    _module_handles,
    clean_tensor_name,
)
from torch.distributed.fsdp._fsdp_extensions import _ext_chunk_tensor
from torch.distributed.fsdp._runtime_utils import _clear_grads_if_needed, _lazy_init
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.flat_param import FlatParameter, FlatParamHandle


@dataclass
class FSDPParamInfo:
    state: _FSDPState
    flat_param: FlatParameter
    param_indices: Dict[str, int]


def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
    keys = sorted(dictionary.keys())
    for k in keys:
        yield k, dictionary[k]


class _ConsolidatedOptimState:
    """
    This holds the consolidated optimizer state on the target rank. Positive-
    dimension tensor state is communicated across ranks, while zero-dimension
    tensor state and non-tensor state is taken directly from the target rank.

    PyTorch version 1.12 moved to using zero-dimension tensors for scalar
    values, but user implemented optimizers may still use float (i.e. a
    non-tensor). Thus, we support both and handle them identically.

    Attributes:
        tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
            tensor state name to the unsharded flattened tensor representing
            the state.
        zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
            dimension tensor state name to its value.
        non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
            name to its value.
    """

    tensor_state: Dict[str, torch.Tensor] = {}
    zero_dim_tensor_state: Dict[str, torch.Tensor] = {}
    non_tensor_state: Dict[str, Any] = {}


class _PosDimTensorInfo(NamedTuple):
    """
    Meatadata for positive-dimension tensors used internally for
    :meth:`scatter_full_optim_state_dict`.

    Attributes:
        shape (torch.Size): Sharded tensor shape (which is equal to the
            unsharded tensor shape if the tensor is optimizer state for a
            non-FSDP parameter and is hence not sharded).
        dtype (torch.dtype): Data type of the tensor.
    """

    shape: torch.Size
    dtype: torch.dtype


class _OptimStateKey(NamedTuple):
    """
    This represents an optimizer state key that may be used commonly across
    ranks. It is based on the unflattened parameter names rather than parameter
    IDs to make it indepenendent of each rank's own optimizer construction.
    """

    unflat_param_names: Tuple[str, ...]
    is_fsdp_managed: bool


def _unflatten_optim_state(
    fsdp_param_info: FSDPParamInfo,
    flat_param_state: Dict[str, Any],
    to_save: bool,
    shard_state: bool,
) -> List[Dict[str, Any]]:
    """
    Unflattens the optimizer state, consisting of the "state" part and the
    "param_groups" part. Unflattening the "state" part involves consolidating
    the state on the target rank and remapping from flattened to unflattened
    parameter IDs, and the "param_groups" part only involves remapping from
    flattened to unflattened parameter IDs.

    Args:
        fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
            parameter.
        flat_param_state (Dict[str, Any]): Entry for the flattened parameter
            in the "state" part of the optimizer state dict.
        to_save (bool): Whether to save the state on this rank.

    Returns:
        List[Dict[str, Any]]: A :class:`list` holding the entries in the
        "state" part of the optimizer state dict corresponding to the
        unflattened parameters comprising the flattened parameter if on the
        target rank or an empty :class:`list` otherwise. The final optimizer
        state dict will need to map these entries using the proper unflattened
        parameter IDs.
    """
    assert (
        not shard_state or to_save
    ), "If ``shard_state`` is True, ``to_save`` has to be True."
    consolidated_state = _communicate_optim_state(
        fsdp_param_info,
        flat_param_state,
    )
    if to_save:
        unflat_param_state = _unflatten_communicated_optim_state(
            fsdp_param_info,
            consolidated_state,
            shard_state,
        )
        for optim_state in unflat_param_state:
            for key in list(optim_state.keys()):
                state = optim_state[key]
                if isinstance(state, torch.Tensor):
                    optim_state[key] = state.cpu()
        return unflat_param_state
    else:
        return []


def _is_zero_dim_tensor(x: Any) -> bool:
    return torch.is_tensor(x) and x.dim() == 0


def _communicate_optim_state(
    fsdp_param_info: FSDPParamInfo,
    flat_param_state: Dict[str, Any],
) -> _ConsolidatedOptimState:
    """
    Communicates the optimizer state for a flattened parameter across ranks.
    All ranks will hold the entire non-sharded optimizer state on GPU.

    If ``N`` is the number of tensor optimizer states in the optimizer state
    dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
    otherwise (where the plus 1 comes from all-gathering the padding per rank).

    Args:
        fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
            parameter.
        flat_param_state (Dict[str, Any]): The entry in the "state" part of the
            optimizer state dict corresponding to the flattened parameter.

    Returns:
        ConsolidatedOptimState: Consolidated optimizer state for the target
            flattened parameter.
    """
    fsdp_state = fsdp_param_info.state
    flat_param = fsdp_param_info.flat_param
    state = _ConsolidatedOptimState()
    tensor_state, zero_dim_tensor_state, non_tensor_state = (
        state.tensor_state,
        state.zero_dim_tensor_state,
        state.non_tensor_state,
    )

    for state_name, value in sorted_items(flat_param_state):
        # Positive-dimension tensor state: communicate across ranks
        if torch.is_tensor(value) and value.dim() > 0:
            # If the parameter is not sharded, then neither is the
            # positive-dimension tensor state, so no need to communicate it --
            # we take the target rank's value
            if (
                fsdp_state.world_size == 1
                or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
            ):
                tensor_state[state_name] = value
                continue
            if not value.is_cuda:
                value = value.to(fsdp_state.compute_device)
            # Assume that positive-dimension tensor optimizer state
            # has the same shape as the sharded flattened parameter
            buffer_size = flat_param._full_param_padded.size()  # type: ignore[attr-defined]
            tensor_buffer = value.new_zeros(*buffer_size)
            dist.all_gather_into_tensor(
                tensor_buffer, value, group=fsdp_state.process_group
            )
            torch.cuda.synchronize()
            unpadded_numel = cast(
                nn.Parameter, flat_param._unpadded_unsharded_size
            ).numel()
            tensor_state[state_name] = tensor_buffer[:unpadded_numel]
        # Zero-dimension tensor state and non-tensor state: take this rank's
        # value directly
        else:
            if _is_zero_dim_tensor(value):
                zero_dim_tensor_state[state_name] = value
            else:
                non_tensor_state[state_name] = value
    return state


def _unflatten_communicated_optim_state(
    fsdp_param_info: FSDPParamInfo,
    state: _ConsolidatedOptimState,
    shard_state: bool,
) -> List[Dict[str, Any]]:
    """
    Unflattens the communicated optimizer state (given by ``tensor_state``,
    ``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened
    parameter. This should only be called on the target rank.

    Args:
        fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
            parameter.
        state (_ConsolidatedOptimState): Consolidated optimizer state.

    Returns:
        List[Dict[str, Any]]: A :class:`list` holding the entries in the
        "state" part of the optimizer state dict corresponding to the
        unflattened parameters comprising the flattened parameter. The final
        optimizer state dict will need to map these entries using the proper
        unflattened parameter IDs.
    """
    fsdp_state = fsdp_param_info.state
    flat_param = fsdp_param_info.flat_param
    unflat_param_state: List[Dict[str, Any]] = []
    flat_param_views: Dict[str, Iterator] = {}
    num_unflat_params = flat_param._num_params
    tensor_state, zero_dim_tensor_state, non_tensor_state = (
        state.tensor_state,
        state.zero_dim_tensor_state,
        state.non_tensor_state,
    )

    for _ in range(num_unflat_params):
        unflat_state_param = {}
        # Add positive-dimension tensor state: unflatten with views
        for state_name, flat_tensor in sorted_items(tensor_state):
            views_generated = state_name in flat_param_views
            if not views_generated:
                views = FlatParamHandle._get_unflat_views(flat_param, flat_tensor)
                flat_param_views[state_name] = views
            else:
                views = flat_param_views[state_name]
            optim_state: Union[torch.Tensor, ShardedTensor] = next(views)
            if shard_state:
                assert fsdp_state.process_group is not None
                optim_state = _ext_chunk_tensor(
                    optim_state,
                    fsdp_state.rank,
                    fsdp_state.world_size,
                    torch.cuda.device_count(),
                    fsdp_state.process_group,
                )
            unflat_state_param[state_name] = optim_state

        # Add zero-dimension tensor state: take the target rank's value
        for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
            unflat_state_param[state_name] = zero_dim_tensor
        # Add non-tensor state: take the target rank's value
        for state_name, non_tensor in sorted_items(non_tensor_state):
            unflat_state_param[state_name] = non_tensor
        unflat_param_state.append(unflat_state_param)
    return unflat_param_state


def _flatten_optim_state_dict(
    optim_state_dict: Dict[str, Any],
    model: nn.Module,
    shard_state: bool,
    use_orig_params: bool = False,
    optim: Optional[torch.optim.Optimizer] = None,
) -> Dict[str, Any]:
    """
    Flattens the full optimizer state dict, still keying by unflattened
    parameter names. If ``shard_state=True``, then FSDP-managed
    ``FlatParameter`` 's optimizer states are sharded, and otherwise, they are
    kept unsharded.

    If ``use_orig_params`` is True, each rank will have all FSDP-managed
    parameters but some of these parameters may be empty due to the sharding.
    For a regular optim.Optimizer, states for those empty parameters will
    not be initialized. So, when aggregating the FQNs across ranks, no assert
    will be raised on a rank even if it does not have all the states -- it is
    valid and FSDP know how to aggregate them. However, FSDP has to ignore
    handling those parameters that are not managed by FSDP and do not exist on
    the local rank -- it is managed by other parallelism and FSDP does not
    know ho to handle/aggregate them.

    Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
    flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
    all the states even if the corresponding parameters are empty. To this end,
    ``optim`` will be used to to get the initial state of the empty parameters.
    ``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
    NamedOptimizer.

    Returns:
        Dict[str, Any]: The flattened optimizer state dict.
    """
    unflat_osd = optim_state_dict
    if "state" not in unflat_osd or "param_groups" not in unflat_osd:
        raise ValueError(
            '`optim_state_dict` must have the keys "state" and '
            '"param_groups" to be a valid optimizer state dict'
        )
    param_to_fqns = _get_param_to_fqns(model)
    fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)

    # Construct the "state" part
    flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
    unflat_osd_state = unflat_osd["state"]
    all_state_keys = set(unflat_osd_state.keys())

    # local_state_dict is used to construct states of empty parameters.
    # This should only be used if is_named_optimizer=True.
    local_state_dict: Dict[str, Any] = {}
    local_state_clean_fqns: Dict[str, str] = {}
    if optim is not None:
        local_state_dict = optim.state_dict()["state"]
        for fqn in local_state_dict.keys():
            clean_fqn = clean_tensor_name(fqn)
            local_state_clean_fqns[clean_fqn] = fqn

    for param, unflat_param_names in param_to_fqns.items():
        fqn = unflat_param_names[0]
        if fqn not in unflat_osd_state:
            continue
        all_state_keys.difference_update(unflat_param_names)
        if fqn in fqn_to_fsdp_param_info:
            fsdp_param_info = fqn_to_fsdp_param_info[fqn]
            if use_orig_params:
                assert (
                    shard_state
                ), "If use_orig_params is True, shard_state must be True."
                flat_state = _shard_orig_param_state(
                    fsdp_param_info,
                    fqn,
                    unflat_osd_state[fqn],
                )
            else:
                flat_state = _flatten_optim_state(
                    fsdp_param_info,
                    unflat_osd_state,
                    unflat_param_names,
                    shard_state,
                )
            key = _OptimStateKey(tuple(unflat_param_names), True)
            # Only include non-empty states since as expected by
            # `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
            # or NamedOptimizer.
            if flat_state:
                flat_osd_state[key] = flat_state
            elif optim is not None:  # NamedOptimizer or KeyedOptimizer case.
                assert len(unflat_param_names) == 1
                local_wrapped_fqn = local_state_clean_fqns.get(fqn, "")
                if local_wrapped_fqn:
                    flat_osd_state[key] = copy.deepcopy(
                        local_state_dict[local_wrapped_fqn]
                    )
        else:  # do not flatten non-FSDP parameters' states
            assert len(unflat_param_names) == 1
            key = _OptimStateKey(tuple(unflat_param_names), False)
            flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])

    # Handle user-defined state, states that are not accosiated with parameters.
    for key in all_state_keys:
        flat_osd_state[key] = copy.copy(unflat_osd_state[key])

    # Construct the "param_groups" part -- copy as is since it will be
    # rekeyed later according to the target rank's optimizer
    flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
    return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}


def _flatten_optim_state(
    fsdp_param_info: FSDPParamInfo,
    unflat_osd_state: Dict[str, Dict[str, Any]],
    unflat_param_names: List[str],
    shard_state: bool,
) -> Dict[str, Any]:
    """
    Flattens the optimizer state in ``full_optim_state_dict`` for a single
    flattened parameter in ``fsdp_param_info`` corresponding to the unflattened
    parameter names in ``unflat_param_names``.

    Args:
        unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
            optimizer state dict corresponding to the unflattened parameters.
        unflat_param_names (List[str]): A :class:`list` of unflattened
            parameter names corresponding to the flattened parameter
            ``flat_param``.
        fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
            parameter.
        shard_state (bool): Whether to shard flattened positive-dimension
            tensor state; if ``False``, then the full flattened tensor is
            kept in the returned :class:`dict.

    Returns:
        Dict[str, Any]: A :class:`dict` mapping state names to their values for
        a particular flattened parameter. The sharded optimizer state dict's
        "state" part will map a key to this returned value.
    """
    fsdp_state = fsdp_param_info.state
    flat_param = fsdp_param_info.flat_param
    num_unflat_params = len(unflat_param_names)
    assert num_unflat_params > 0, (
        "Expects at least one unflattened parameter corresponding to the "
        "flattened parameter"
    )
    unflat_param_shapes = flat_param._shapes
    num_unflat_param_shapes = len(unflat_param_shapes)
    assert (
        num_unflat_params == num_unflat_param_shapes
    ), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"

    # Check if these unflattened parameters have any optimizer state
    has_state = [
        bool(unflat_param_name in unflat_osd_state)
        for unflat_param_name in unflat_param_names
    ]
    # If none of the unflattened parameters comprising this flattened parameter
    # have any state, then we do not want an entry in the optimizer state dict
    if not any(has_state):
        return {}  # no need to flatten any state
    # There may still be some unflattened parameters with state and some
    # without
    unflat_param_states = [
        _gather_state_dict(
            unflat_osd_state[unflat_param_name], pg=fsdp_state.process_group
        )
        if unflat_param_name in unflat_osd_state
        else None
        for unflat_param_name in unflat_param_names
    ]
    # Check that the unflattened parameters have the same state names
    state_names = None
    for unflat_param_state in unflat_param_states:
        if unflat_param_state is None:
            continue
        if state_names is None:
            state_names = set(unflat_param_state.keys())
        else:
            if state_names != set(unflat_param_state.keys()):
                raise ValueError(
                    "Differing optimizer state names for the unflattened "
                    f"parameters: {unflat_param_names}"
                )
    assert state_names is not None

    # Flatten the state
    flat_state: Dict[str, Any] = {}
    for state_name in state_names:
        state_values = [
            unflat_param_state[state_name] if unflat_param_state is not None else None
            for unflat_param_state in unflat_param_states
        ]
        non_none_state_values = [v for v in state_values if v is not None]
        are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
        for v in non_none_state_values:
            are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
            are_zero_dim_tensors &= _is_zero_dim_tensor(v)
            are_non_tensors &= not torch.is_tensor(v)
        types = {type(v) for v in non_none_state_values}
        if len(types) != 1 or not (
            are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
        ):
            raise ValueError(
                f"Differing optimizer state types for state {state_name}, "
                f"values {non_none_state_values}, and unflattened parameter "
                f"names {unflat_param_names}"
            )
        if are_pos_dim_tensors:
            flat_tensor = _flatten_tensor_optim_state(
                state_name,
                state_values,
                unflat_param_names,
                unflat_param_shapes,
                flat_param,
            )
            if shard_state:
                # Shard the flattened tensor immediately to minimize max memory
                # usage
                sharded_flat_tensor, _ = FlatParamHandle._get_shard(
                    flat_tensor,
                    fsdp_state.rank,
                    fsdp_state.world_size,
                )
                flat_state[state_name] = sharded_flat_tensor
            else:
                flat_state[state_name] = flat_tensor
        elif are_zero_dim_tensors:
            flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
                state_name,
                state_values,
                unflat_param_names,
            )
        else:
            assert are_non_tensors
            flat_state[state_name] = _flatten_non_tensor_optim_state(
                state_name,
                state_values,
                unflat_param_names,
            )

    return flat_state


def _flatten_tensor_optim_state(
    state_name: str,
    pos_dim_tensors: List[torch.Tensor],
    unflat_param_names: List[str],
    unflat_param_shapes: Sequence[torch.Size],
    flat_param: FlatParameter,
) -> torch.Tensor:
    """
    Flattens the positive-dimension tensor optimizer state given by the values
    ``tensors`` for the state ``state_name`` for a single flattened parameter
    ``flat_param`` corresponding to the unflattened parameter names
    ``unflat_param_names`` and unflatted parameter shapes
    ``unflat_param_shapes``. This flattens each unflattened parameter's tensor
    state into one tensor.

    NOTE: We use zero tensors for any unflattened parameters without state
    since some value is required to fill those entries. This assumes that the
    zero tensor is mathematically equivalent to having no state, which is true
    for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
    optimizers.

    Args:
        state_name (str): Optimizer state name.
        pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
            optimizer state values for the unflattened parameters corresponding
            to the single flattened parameter.
        unflat_param_names (List[str]): A :class:`list` of unflattened
            parameter names corresponding to the single flattened parameter.
        unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
            corresponding to the single flattened parameter.
        flat_param (FlatParameter): The flattened parameter.

    Returns:
        torch.Tensor: A flattened tensor containing the optimizer state
        corresponding to ``state_name`` constructed by concatenating the
        unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
        tensors for any unflattened parameters without the state).
    """
    non_none_tensors = [t for t in pos_dim_tensors if t is not None]
    # Check that all are tensors with the same dtype
    dtypes = {t.dtype for t in non_none_tensors}
    if len(dtypes) != 1:
        raise ValueError(
            "All unflattened parameters comprising a single flattened "
            "parameter must have positive-dimension tensor state with the "
            f"same dtype but got dtypes {dtypes} for state {state_name} and "
            f"unflattened parameter names {unflat_param_names}"
        )
    dtype = next(iter(dtypes))
    # Check that each tensor state matches its parameter's shape
    for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
        if tensor is None and len(shape) == 0:
            raise ValueError("Flattening a zero-dimension parameter is not supported")
        elif tensor is not None and tensor.shape != shape:
            raise ValueError(
                "Tensor optimizer state does not have same shape as its "
                f"parameter: {tensor.shape} {shape}"
            )
    # Flatten the tensor states: we do not need to add any padding since the
    # flattened optimizer state tensor sharded via `_get_shard()`, which pads
    # the shard as needed (just like for the flattened parameter)
    cpu_device = torch.device("cpu")
    tensors = [
        torch.flatten(state_value.to(cpu_device))
        if state_value is not None
        else torch.flatten(
            torch.zeros(
                size=shape,
                dtype=dtype,
                device=cpu_device,
            )
        )
        for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
    ]
    flat_tensor = torch.cat(tensors)
    flat_param_shape = flat_param._unpadded_unsharded_size  # type: ignore[attr-defined]
    assert flat_tensor.shape == flat_param_shape, (
        f"tensor optim state: {flat_tensor.shape} "
        f"flattened parameter: {flat_param_shape}"
    )
    return flat_tensor


def _flatten_zero_dim_tensor_optim_state(
    state_name: str,
    zero_dim_tensors: List[torch.Tensor],
    unflat_param_names: List[str],
) -> torch.Tensor:
    """
    Flattens the zero-dimension tensor optimizer state given by the values
    ``zero_dim_tensors`` for the state ``state_name`` for a single flattened
    parameter corresponding to the unflattened parameter names
    ``unflat_param_names`` by enforcing that all tensors are the same and using
    that common value.

    NOTE: The requirement that the tensors are the same across all unflattened
    parameters comprising the flattened parameter is needed to maintain the
    invariant that FSDP performs the same computation as its non-sharded
    equivalent. This means that none of the unflattened parameters can be
    missing this state since imposing a value may differ from having no value.
    For example, for Adam's "step", no value means maximum bias correction,
    while having some positive value means less bias correction.

    Args:
        state_name (str): Optimizer state name.
        zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
            for the unflattened parameters corresponding to the single
            flattened parameter.
        unflat_param_names (List[str]): A :class:`list` of unflattened
            parameter names corresponding to the single flattened parameter.

    Returns:
        torch.Tensor: A zero-dimensional tensor giving the value of the state
        ``state_name`` for all unflattened parameters corresponding to the
        names ``unflat_param_names``.
    """
    non_none_tensors = [t for t in zero_dim_tensors if t is not None]
    # Enforce that all have the same value and dtype
    values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
    dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
    if (
        len(non_none_tensors) != len(zero_dim_tensors)
        or len(values_set) != 1
        or len(dtypes) != 1
    ):
        raise ValueError(
            "All unflattened parameters comprising a single flattened "
            "parameter must have scalar state with the same value and dtype "
            f"but got values {values_set} and dtypes {dtypes} for state "
            f"{state_name} and unflattened parameter names "
            f"{unflat_param_names}"
        )
    value = next(iter(values_set))
    dtype = next(iter(dtypes))
    return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))


def _flatten_non_tensor_optim_state(
    state_name: str,
    non_tensors: List[Any],
    unflat_param_names: List[str],
) -> Any:
    """
    Flattens the non-tensor optimizer state given by the values ``non_tensors``
    for the state ``state_name`` for a single flattened parameter corresponding
    to the unflattened parameter names ``unflat_param_names`` by enforcing that
    all values are the same and using that common value.

    See the note in :func:`_flatten_zero_dim_tensor_optim_state`.

    Args:
        state_name (str): Optimizer state name.
        non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
            parameters corresponding to the single flattened parameter.
        unflat_param_names (List[str]): A :class:`list` of unflattened
            parameter names corresponding to the single flattened parameter.

    Returns:
        Any: A non-tensor giving the value of the state ``state_name`` for all
        unflattened parameters corresponding to the names
        ``unflat_param_names``.
    """
    non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
    # Enforce that all have the same value (same type already checked)
    non_tensor_set = set(non_tensors)
    if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
        raise ValueError(
            "All unflattened parameters comprising a single flattened "
            "parameter must have scalar state with the same value and dtype "
            f"but got values {non_tensor_set} for state {state_name} and  "
            f"unflattened parameter names {unflat_param_names}"
        )
    non_tensor = next(iter(non_tensor_set))
    return non_tensor


def _process_pos_dim_tensor_state(
    flat_optim_state_dict: Dict[str, Any],
    world_size: int,
) -> Dict[str, Any]:
    """
    Processes positive-dimension tensor states in ``flat_optim_state_dict`` by
    replacing them with metadata. This is done so the processed optimizer state
    dict can be broadcast from rank 0 to all ranks without copying those tensor
    states, and thus, this is meant to only be called on rank 0.

    Args:
        flat_optim_state_dict (Dict[str, Any]): Flattened optimizer state dict
            with the positive-dimension tensor states unsharded.

    Returns:
        Dict[str, Any]: The flattened optimizer state dict with positive-
        dimension tensor states replaced by metadata.
    """
    flat_osd = flat_optim_state_dict  # alias
    no_tensor_osd: Dict[str, Any] = {"state": {}}
    for key, param_state in flat_osd["state"].items():
        no_tensor_osd["state"][key] = {}
        for state_name, value in sorted_items(param_state):
            is_pos_dim_tensor_state = torch.is_tensor(value) and value.dim() > 0
            if not is_pos_dim_tensor_state:
                no_tensor_osd["state"][key][state_name] = value
                continue
            if key.is_fsdp_managed:  # FSDP parameter
                sharded_size = FlatParamHandle._get_sharded_size(
                    value, rank=0, world_size=world_size
                )
                assert len(sharded_size) == 1, f"{sharded_size}"
                info = _PosDimTensorInfo(sharded_size, value.dtype)
            else:  # non-FSDP parameter
                info = _PosDimTensorInfo(value.shape, value.dtype)
            no_tensor_osd["state"][key][state_name] = info
    no_tensor_osd["param_groups"] = flat_osd["param_groups"]
    return no_tensor_osd


def _broadcast_processed_optim_state_dict(
    processed_optim_state_dict: Optional[Dict[str, Any]],
    rank: int,
    group,
) -> Dict[str, Any]:
    """
    Broadcasts the processed optimizer state dict from rank 0 to all ranks.

    Args:
        processed_optim_state_dict (Optional[Dict[str, Any]]): The flattened
            optimizer state dict with positive-dimension tensor states replaced
            with metadata if on rank 0; ignored otherwise.

    Returns:
        Dict[str, Any]: The processed optimizer state dict.
    """
    # Broadcast the two data structures rank 0 to all ranks
    obj_list = [processed_optim_state_dict] if rank == 0 else [None]
    dist.broadcast_object_list(obj_list, src=0, group=group)
    processed_optim_state_dict = obj_list[0]  # type: ignore[assignment]
    assert processed_optim_state_dict is not None
    # Keep zero-dimension tensors on CPU
    return processed_optim_state_dict


def _broadcast_pos_dim_tensor_states(
    processed_optim_state_dict: Dict[str, Any],
    flat_optim_state_dict: Optional[Dict[str, Any]],
    rank: int,
    world_size: int,
    group,
    broadcast_device: torch.device,
) -> Dict[str, Any]:
    """
    Takes ``processed_optim_state_dict``, which has metadata in place of
    positive-dimension tensor states, and broadcasts those tensor states from
    rank 0 to all ranks. For tensor states corresponding to FSDP parameters,
    rank 0 shards the tensor and broadcasts shard-by-shard, and for tensor
    states corresponding to non-FSDP parameters, rank 0 broadcasts the full
    tensor.

    Args:
        processed_optim_state_dict (Dict[str, Any]): The flattened optimizer
            state dict with positive-dimension tensor states replaced with
            metadata; this should be returned by
            :meth:`_process_pos_dim_tensor_state` and non-empty on all ranks.
        flat_optim_state_dict (Optional[Dict[str, Any]]): The flattened
            unsharded optimizer state dict with the actual positive-dimension
            tensor states if on rank 0; ignored on nonzero ranks.

    Returns:
        Dict[str, Any]: The optimizer state dict with the positive-dimension
        tensor state correctly populated via ``broadcast()`` s from rank 0.
    """
    assert (
        rank != 0 or flat_optim_state_dict is not None
    ), "Expects rank 0 to pass in the flattened optimizer state dict"
    no_tensor_osd = processed_optim_state_dict  # alias
    flat_osd = flat_optim_state_dict  # alias
    for key, param_state in no_tensor_osd["state"].items():
        for state_name, value in sorted_items(param_state):
            is_pos_dim_tensor_state = isinstance(value, _PosDimTensorInfo)
            if not is_pos_dim_tensor_state:
                continue
            if rank == 0:
                assert flat_osd is not None
                unsharded_tensor = flat_osd["state"][key][state_name]
            else:
                unsharded_tensor = None
            shape, dtype = value.shape, value.dtype
            if key.is_fsdp_managed:  # FSDP parameter
                _broadcast_sharded_pos_dim_tensor_state(
                    unsharded_tensor,
                    param_state,
                    state_name,
                    shape,
                    dtype,
                    broadcast_device,
                    rank,
                    world_size,
                    group,
                )  # modify `param_state` destructively
            else:  # non-FSDP parameter
                _broadcast_unsharded_pos_dim_tensor_state(
                    unsharded_tensor,
                    param_state,
                    state_name,
                    shape,
                    dtype,
                    broadcast_device,
                    rank,
                    group,
                )  # modify `param_state` destructively
    return no_tensor_osd


def _broadcast_sharded_pos_dim_tensor_state(
    unsharded_tensor: Optional[torch.Tensor],
    param_state: Dict[str, Any],
    state_name: str,
    shape: torch.Size,
    dtype: torch.dtype,
    broadcast_device: torch.device,
    rank: int,
    world_size: int,
    group,
) -> None:
    """
    Broadcasts positive-dimension tensor state for the state ``state_name``
    corresponding to an FSDP parameter shard-by-shard, only to be saved on the
    relevant rank. This modifies ``param_state`` destructively.

    Args:
        unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor from which
            to broadcast shards if on rank 0; ignored otherwise.
        shape (torch.Size): Shape of the sharded tensor; same on all ranks.
    """
    get_shard: Optional[functools.partial[Tuple[torch.Tensor, int]]] = None
    if rank == 0:
        assert (
            unsharded_tensor is not None
        ), "Expects rank 0 to pass in the unsharded tensor"
        get_shard = functools.partial(
            FlatParamHandle._get_shard,
            unsharded_tensor,
        )
    for target_rank in range(1, world_size):
        if rank == 0:
            assert get_shard is not None
            sharded_tensor = get_shard(target_rank, world_size)[0].to(broadcast_device)
        else:
            sharded_tensor = torch.zeros(
                shape,
                requires_grad=False,
                dtype=dtype,
                device=broadcast_device,
            )
        dist.broadcast(sharded_tensor, src=0, group=group)
        # Only keep the shard on the target rank and keep it on the broadcast
        # device, which is typically GPU
        if rank == target_rank:
            param_state[state_name] = sharded_tensor
        else:
            del sharded_tensor
    # Lastly, shard on rank 0
    if rank != 0:
        return
    param_state[state_name] = get_shard(0, world_size)[0].to(broadcast_device)  # type: ignore[misc]


def _broadcast_unsharded_pos_dim_tensor_state(
    unsharded_tensor: Optional[torch.Tensor],
    param_state: Dict[str, Any],
    state_name: str,
    shape: torch.Size,
    dtype: torch.dtype,
    broadcast_device: torch.device,
    rank: int,
    group,
) -> None:
    """
    Broadcasts positive-dimension tensor state for the state ``state_name``
    corresponding to an unsharded non-FSDP parameter from rank 0 to all ranks.
    This modifies ``param_state`` destructively.

    Args:
        unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor to
            broadcast if on rank 0; ignored otherwise.
    """
    if rank == 0:
        assert (
            unsharded_tensor is not None
        ), "Expects rank 0 to pass in the unsharded tensor"
        assert (
            shape == unsharded_tensor.shape
        ), f"Shape mismatch: {shape} {unsharded_tensor.shape}"
        assert (
            dtype == unsharded_tensor.dtype
        ), f"dtype mismatch: {dtype} {unsharded_tensor.dtype}"
        unsharded_tensor = unsharded_tensor.to(broadcast_device)
    else:
        unsharded_tensor = torch.zeros(
            shape,
            requires_grad=False,
            dtype=dtype,
            device=broadcast_device,
        )
    dist.broadcast(unsharded_tensor, src=0, group=group)
    # Keep the tensor on the broadcast device, which is typically GPU
    param_state[state_name] = unsharded_tensor


def _rekey_sharded_optim_state_dict(
    sharded_osd: Dict[str, Any],
    model: nn.Module,
    optim: torch.optim.Optimizer,
    optim_input: Optional[
        Union[
            List[Dict[str, Any]],
            Iterable[nn.Parameter],
        ]
    ],
    using_optim_input: bool,
    is_named_optimizer: bool = False,
) -> Dict[str, Any]:
    """
    Rekeys the optimizer state dict from unflattened parameter names to
    flattened parameter IDs according to the calling rank's ``optim``, which
    may be different across ranks. In particular, the unflattened parameter
    names are represented as :class:`_OptimStateKey` s.
    """
    param_to_fqns = _get_param_to_fqns(model)
    flat_param_to_fqn = _get_flat_param_to_fqn(model)
    param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
        Dict[nn.Parameter, Union[int, str]],
        (
            _get_param_to_param_id_from_optim_input(model, optim_input)
            if using_optim_input
            else _get_param_to_param_key(
                optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
            )
        ),
    )
    # All parameter keys in `param_to_param_key` should be in
    # `param_to_fqns` -- strict inequality follows when not all parameters are
    # passed to the optimizer
    assert len(param_to_param_key) <= len(param_to_fqns)

    unflat_param_names_to_flat_param_key: Dict[
        Tuple[str, ...], Union[int, str]
    ] = {}  # for "state"
    unflat_param_name_to_flat_param_key: Dict[
        str, Union[int, str]
    ] = {}  # for "param_groups"
    for param, unflat_param_names in param_to_fqns.items():
        if param not in param_to_param_key:
            # This parameter was not passed to the optimizer
            continue
        flat_param_key = param_to_param_key[param]
        unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
        for unflat_param_name in unflat_param_names:
            unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key

    sharded_osd_state = sharded_osd["state"]
    rekeyed_osd_state: Dict[Union[str, int], Any] = {}
    for key, param_state in sharded_osd_state.items():
        if isinstance(key, str):
            rekeyed_osd_state[key] = param_state
            continue
        flat_param_key = unflat_param_names_to_flat_param_key.get(
            key.unflat_param_names, key.unflat_param_names
        )
        rekeyed_osd_state[flat_param_key] = param_state

    rekeyed_osd_param_groups: List[Dict[str, Any]] = []
    for unflat_param_group in sharded_osd["param_groups"]:
        flat_param_group = copy.deepcopy(unflat_param_group)
        flat_param_keys = sorted(
            {
                unflat_param_name_to_flat_param_key[unflat_param_name]
                for unflat_param_name in unflat_param_group["params"]
            }
        )
        flat_param_group["params"] = flat_param_keys
        rekeyed_osd_param_groups.append(flat_param_group)

    return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}


def _get_param_id_to_param_from_optim_input(
    model: nn.Module,
    optim_input: Optional[
        Union[
            List[Dict[str, Any]],
            Iterable[nn.Parameter],
        ]
    ] = None,
) -> Dict[int, nn.Parameter]:
    """
    Constructs a mapping from parameter IDs to parameters. This may be used
    both for models with ``FlatParameter`` s and without.

    NOTE: This method is only preserved for backward compatibility. The method
    :meth:`_get_param_key_to_param` is the preferred code path that does not
    rely on ``optim_input``.

    NOTE: We critically assume that, whether the optimizer input is a list of
    parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
    enumerates the parameter IDs in order. In other words, for a parameter list
    input, the parameter IDs should be in that list order, and for a parameter
    groups input, the parameter IDs should be in order within each parameter
    group and in order across parameter groups.

    Args:
        model (nn.Module): Model whose parameters are passed into the
            optimizer.
        optim_input (Optional[Union[List[Dict[str, Any]],
        Iterable[nn.Parameter]]]): Input passed into the optimizer
            representing either a :class:`list` of parameter groups or an
            iterable of parameters; if ``None``, then this method assumes the
            input was ``model.parameters()``. (Default: ``None``)

    Returns:
        List[nn.Parameter]: Mapping from parameter IDs to parameters,
        where the parameter ID is implicitly the index in the :class:`list`.
    """
    # Assume the standard case of passing `model.parameters()` to the optimizer
    # if `optim_input` is not specified
    if optim_input is None:
        return {pid: param for pid, param in enumerate(model.parameters())}
    try:
        params = cast(List[nn.Parameter], list(optim_input))
    except TypeError as e:
        raise TypeError(
            "Optimizer input should be an iterable of Tensors or dicts, "
            f"but got {optim_input}"
        ) from e
    if len(params) == 0:
        raise ValueError("Optimizer input should not be empty")

    # Check if the optimizer input represents tensors or parameter groups
    all_tensors = True
    all_dicts = True
    for param in params:
        all_tensors &= isinstance(param, torch.Tensor)
        all_dicts &= isinstance(param, dict)
    if not all_tensors and not all_dicts:
        raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
    if all_tensors:
        return {pid: param for pid, param in enumerate(params)}
    assert all_dicts
    param_id_to_param: List[nn.Parameter] = []
    for param_group in params:
        has_params_key = "params" in param_group  # type: ignore[operator]
        assert has_params_key, (
            'A parameter group should map "params" to a list of the '
            "parameters in the group"
        )
        for param in param_group["params"]:  # type: ignore[index]
            # Implicitly map `flat_param_id` (current length of the list) to
            # `param`
            param_id_to_param.append(param)
    return {pid: param for pid, param in enumerate(param_id_to_param)}


def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[nn.Parameter, str]:
    def module_fn(module, prefix, flat_param_to_fqn):
        for param_name, param in module.named_parameters(recurse=False):
            if type(param) is not FlatParameter:
                continue
            fqn = clean_tensor_name(prefix + param_name)
            flat_param_to_fqn[param] = fqn

    def return_fn(flat_param_to_fqn):
        return flat_param_to_fqn

    flat_param_to_fqn_ret: Dict[torch.nn.Parameter, str] = {}
    return _apply_to_modules(
        model,
        module_fn,
        return_fn,
        [fqn for fqn, _ in model.named_parameters()],
        flat_param_to_fqn_ret,
    )


def _get_param_key_to_param(
    optim: torch.optim.Optimizer,
    model: Optional[nn.Module] = None,
    is_named_optimizer: bool = False,
    param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
    flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
) -> Dict[Union[int, str], nn.Parameter]:
    """
    Constructs a mapping from parameter keys to parameters. For the regular
    optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
    are FQNs. This API may be used both for models with ``FlatParameter`` s and
    without.
    """
    clean_fqn_to_curr_fqn: Dict[str, str] = {}
    if is_named_optimizer:
        assert (
            param_to_fqns is not None and flat_param_to_fqn is not None
        ), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
        assert model is not None
        for key, _ in model.named_parameters():
            clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key

    param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
    pid = 0
    for param_group in optim.param_groups:
        if is_named_optimizer:
            for param in param_group["params"]:
                assert flat_param_to_fqn is not None
                if param in flat_param_to_fqn:
                    # FlatParameter case
                    key = flat_param_to_fqn[param]
                else:
                    assert param_to_fqns is not None
                    # use_orig_params case
                    assert len(param_to_fqns[param]) == 1
                    key = param_to_fqns[param][0]
                key = clean_fqn_to_curr_fqn[key]
                param_key_to_param[key] = param
        else:
            for param in param_group["params"]:
                param_key_to_param[pid] = param
                pid += 1

    return param_key_to_param


def _get_param_to_param_key(
    optim: torch.optim.Optimizer,
    model: Optional[nn.Module] = None,
    is_named_optimizer: bool = False,
    param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
    flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
) -> Dict[nn.Parameter, Union[int, str]]:
    """
    Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
    only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
    So the parameter keys will be parameter id.
    """
    param_id_to_param = _get_param_key_to_param(
        optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
    )
    return {param: param_id for param_id, param in param_id_to_param.items()}


def _get_param_to_param_id_from_optim_input(
    model: nn.Module,
    optim_input: Optional[
        Union[
            List[Dict[str, Any]],
            Iterable[nn.Parameter],
        ]
    ] = None,
) -> Dict[nn.Parameter, int]:
    """Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
    param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
    return {param: param_id for param_id, param in param_id_to_param.items()}


def _check_missing_keys_on_rank(
    r0_optim_state_keys: List[_OptimStateKey],
    optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
    param_key_to_param: Dict[Union[str, int], nn.Parameter],
    group: Optional[dist.ProcessGroup],
) -> None:
    # Ensure that all ranks have at least the optimizer states needed by
    # rank 0's optimizer
    missing_keys: List[_OptimStateKey] = []
    for r0_optim_state_key in r0_optim_state_keys:
        if r0_optim_state_key not in optim_state_key_to_param_key:
            # A parameter from rank 0's optimizer does not exist for this
            # rank's optimizer
            missing_keys.append(r0_optim_state_key)
            continue
        param_key = optim_state_key_to_param_key[r0_optim_state_key]
        if isinstance(param_key, int):
            assert param_key >= 0 and param_key < len(
                param_key_to_param
            ), "Check the `param_key_to_param` construction"
    device = torch.device("cuda", torch.cuda.current_device())
    num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
    dist.all_reduce(num_missing, group=group)
    if num_missing.item() > 0:
        obj_list = [None for _ in range(dist.get_world_size(group))]
        dist.all_gather_object(obj_list, missing_keys, group=group)
        error_msg = (
            "FSDP currently requires each rank to have at least the "
            "optimizer states needed by rank 0's optimizer but some ranks "
            "are missing some of those states"
        )
        for rank, keys in enumerate(obj_list):
            keys = cast(List[_OptimStateKey], keys)
            if len(keys) > 0:
                error_msg += (
                    f"\nRank {rank} is missing states for the parameters: "
                    f"{[key.unflat_param_names for key in keys]}"
                )
        raise RuntimeError(error_msg)


def _map_param_key_to_optim_keys(
    optim_state_dict: Dict[str, Any],
    group: Optional[dist.ProcessGroup],
    param_key_to_param: Dict[Union[int, str], nn.Parameter],
    param_to_fqns: Dict[nn.Parameter, List[str]],
    fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
    merge_keys: bool = False,
) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
    """
    Construct the local mapping between the ``_OptimStateKey`` and parameter keys
    and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
    must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
    Note that ``merge_keys`` should equal to ``use_orig_params``.
    """
    rank = dist.get_rank(group)
    optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {}  # local
    all_optim_state_keys: List[_OptimStateKey] = []

    for param_key, param in param_key_to_param.items():
        # Do not include parameters without state to avoid empty mappings
        # just like in normal `torch.optim.Optimizer.state_dict()`
        if param_key not in optim_state_dict["state"]:
            continue
        fqns = param_to_fqns[param]
        is_fsdp_managed = isinstance(param, FlatParameter)
        if is_fsdp_managed:
            assert fqns[0] in fqn_to_fsdp_param_info, (
                fqns[0],
                list(fqn_to_fsdp_param_info.keys()),
            )
        is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
        optim_state_key = _OptimStateKey(
            unflat_param_names=tuple(fqns),
            is_fsdp_managed=is_fsdp_managed,
        )
        if rank == 0 or merge_keys:
            all_optim_state_keys.append(optim_state_key)
        optim_state_key_to_param_key[optim_state_key] = param_key

    if merge_keys:
        all_keys: List[List[_OptimStateKey]] = [
            [] for _ in range(dist.get_world_size(group))
        ]
        dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
        merge_all_optim_state_keys = [
            key for local_keys in all_keys for key in local_keys
        ]
        all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
    else:
        key_obj_list: List[Optional[List[_OptimStateKey]]] = (
            [all_optim_state_keys] if rank == 0 else [None]
        )
        dist.broadcast_object_list(key_obj_list, src=0, group=group)
        assert key_obj_list[0] is not None
        all_optim_state_keys = key_obj_list[0]
        _check_missing_keys_on_rank(
            all_optim_state_keys,
            optim_state_key_to_param_key,
            param_key_to_param,
            group,
        )

    return all_optim_state_keys, optim_state_key_to_param_key


def _unflatten_param_groups(
    state_dict: Dict[str, Any],
    param_key_to_param: Dict[Union[int, str], nn.Parameter],
    param_to_fqns: Dict[nn.Parameter, List[str]],
) -> List[Dict[str, Any]]:
    param_groups: List[Dict[str, Any]] = []
    for flat_param_group in state_dict["param_groups"]:
        unflat_param_group = copy.deepcopy(flat_param_group)
        param_group_params = [
            param_key_to_param[flat_param_key]
            for flat_param_key in flat_param_group["params"]
        ]
        nested_unflat_param_names = [
            param_to_fqns[param] for param in param_group_params
        ]
        unflat_param_group["params"] = [
            unflat_param_name
            for unflat_param_names in nested_unflat_param_names
            for unflat_param_name in unflat_param_names
        ]  # flatten the list of lists
        param_groups.append(unflat_param_group)
    return param_groups


def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
    state = optim_state_dict.get("state", None)
    if not state:
        # If we cannot find a state, assume it is not NamedOptimizer as
        # NamedOptimizer has eagerly initialization.
        return False
    try:
        key = next(iter(state.keys()))
    except Exception as e:
        raise Exception(optim_state_dict) from e
    return isinstance(key, str)


def _optim_state_dict(
    model: nn.Module,
    optim: torch.optim.Optimizer,
    optim_state_dict: Dict[str, Any],
    optim_input: Optional[
        Union[
            List[Dict[str, Any]],
            Iterable[nn.Parameter],
        ]
    ],
    rank0_only: bool,
    shard_state: bool,
    group: Optional[dist.ProcessGroup],
    using_optim_input: bool,
    use_orig_params: bool = False,
) -> Dict[str, Any]:
    """
    Consolidates the optimizer state and returns it as a :class:`dict`
    following the convention of :meth:`torch.optim.Optimizer.state_dict`,
    i.e. with keys ``"state"`` and ``"param_groups"``.
    The flattened parameters in ``FSDP`` modules contained in ``model``
    are mapped back to their unflattened parameters.

    Parameter keys are not well-defined. For a regular optimizer, the optimizer
    state_dict contains a mapping from parameter IDs to parameter states.
    Parameter IDs are the order of parameters in ``optim.param_groups()`` across
    all the groups. This API also allows user to pass ``optim_input`` for the
    mapping between parameters and parameter IDs. Using ``optim_input`` is being
    deprecated.

    If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
    contain parameter IDs mapping but a mapping from parameter FQNs to parameter
    states. This API finds the mapping from FQNs to parameters if the optimizer
    is a ``NamedOptimizer``.

    If ``use_orig_params`` is True, each rank will have all FSDP-managed
    parameters but some of these parameters may be empty due to the sharding.
    For a regular optim.Optimizer, states for those empty parameters will
    not be initialized. So, when aggregating the FQNs across ranks, no assert
    will be raised on a rank even if it does not have all the states -- it is
    valid and FSDP know how to aggregate them. However, FSDP has to ignore
    handling those parameters that are not managed by FSDP and do not exist on
    the local rank -- it is managed by other parallelism and FSDP does not
    know ho to handle/aggregate them.

    Args:
        model (nn.Module): Root module (which may or may not be a
            :class:`FullyShardedDataParallel` instance) whose parameters
            were passed into the optimizer ``optim``.
        optim (torch.optim.Optimizer): Optimizer for ``model`` 's
            parameters.
        rank0_only (bool): If ``True``, saves the populated :class:`dict`
            only on rank 0; if ``False``, saves it on all ranks. (Default:
            ``True``)
        shard_state (bool): If ``True``, shard and distribute all
            non-zero-dimension states.

    Returns:
        Dict[str, Any]: A :class:`dict` containing the optimizer state for
        ``model`` 's original unflattened parameters and including keys
        "state" and "param_groups" following the convention of
        :meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
        then nonzero ranks return an empty :class:`dict`.
    """
    _clear_grads_if_needed(traversal_utils._get_fsdp_handles(model))
    to_save = not rank0_only or (dist.get_rank(group) == 0 or shard_state)
    fsdp_osd: Dict[str, Any] = {"state": {}, "param_groups": []} if to_save else {}
    fsdp_osd_state: Dict[str, Any] = fsdp_osd["state"] if to_save else {}
    param_to_fqns = _get_param_to_fqns(model)
    flat_param_to_fqn = _get_flat_param_to_fqn(model)
    is_named_optimizer = _is_named_optimizer(optim_state_dict)

    param_key_to_param = cast(
        Dict[Union[int, str], nn.Parameter],
        (
            _get_param_id_to_param_from_optim_input(model, optim_input)
            if using_optim_input
            else _get_param_key_to_param(
                optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
            )
        ),
    )
    fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)

    all_optim_state_keys, optim_state_key_to_param_key = _map_param_key_to_optim_keys(
        optim_state_dict,
        group,
        param_key_to_param,
        param_to_fqns,
        fqn_to_fsdp_param_info,
        merge_keys=use_orig_params,
    )

    # Iterate in rank 0's flattened parameter ID order to ensure aligned
    # all-gathers across ranks
    for optim_state_key in all_optim_state_keys:
        param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
            optim_state_key, None
        )

        if param_key is None:
            assert use_orig_params, (
                "If use_orig_params is False, we must be able to find the "
                f"corresponding param id. {optim_state_key} {param_key}"
            )
            if not optim_state_key.is_fsdp_managed:
                continue

        if optim_state_key.is_fsdp_managed:
            # If there are multiple unflat_param_names (not use_orig_params),
            # they share the same FSDPParamInfo. So the first unflat_param_name
            # is sufficient to fetch the FSDPParamInfo.
            fqn = optim_state_key.unflat_param_names[0]
            fsdp_param_info = fqn_to_fsdp_param_info[fqn]
            if use_orig_params:
                state = (
                    {} if param_key is None else optim_state_dict["state"][param_key]
                )
                unflat_state = [
                    _gather_orig_param_state(
                        fsdp_param_info, fqn, state, shard_state, group
                    )
                ]
            else:
                unflat_state = _unflatten_optim_state(
                    fsdp_param_info,
                    optim_state_dict["state"][param_key],
                    to_save,
                    shard_state,
                )
            if to_save:
                assert len(unflat_state) == len(optim_state_key.unflat_param_names)
                for unflat_param_name, unflat_param_state in zip(
                    optim_state_key.unflat_param_names,
                    unflat_state,
                ):
                    fsdp_osd_state[unflat_param_name] = unflat_param_state
        elif to_save:
            assert len(optim_state_key.unflat_param_names) == 1
            unflat_param_name = optim_state_key.unflat_param_names[0]
            fsdp_osd_state[unflat_param_name] = copy.copy(
                optim_state_dict["state"][param_key]
            )
            for state_name, value in sorted_items(fsdp_osd_state[unflat_param_name]):
                if torch.is_tensor(value):
                    fsdp_osd_state[unflat_param_name][state_name] = value.cpu()

    if to_save:
        flat_param_fqns = set(flat_param_to_fqn.values())
        for key, value in optim_state_dict["state"].items():
            if key in fsdp_osd_state:
                continue
            if key in flat_param_fqns:
                continue
            if key in param_key_to_param:
                continue
            # This key is not recognized by FSDP. It may be a user-defined state
            # or some parameters state that FSDP is unable to map from
            # ``optim.param_groups``.
            warnings.warn(
                f"Found a optim state, {key}, that FSDP cannot process. FSDP "
                "will directly copy everything to the returned state_dict. In "
                "most cases, this is a user-defined state that is not "
                "associated with any particular parameter. Another possible "
                "case is this state is managed by DMP. Otherwise, there may "
                " be a mismatched assumption of optim_state_dict of this mode."
            )
            fsdp_osd_state[key] = value

        fsdp_osd["param_groups"] = _unflatten_param_groups(
            optim_state_dict, param_key_to_param, param_to_fqns
        )

    return fsdp_osd


def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
    """
    Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
    if the param is managed by FSDP. ``FlatParameter._fqns`` only stores the first
    FQN of a shared parameter. So the keys in the mapping are guaranteed to map
    to unique parameters.
    """

    def module_fn(module, prefix, fqn_to_param_info):
        fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
        if fsdp_state is None:
            return
        _lazy_init(fsdp_state, module)
        handles = _module_handles(fsdp_state, module)
        if not handles:
            return
        flat_param = handles[0].flat_param
        fsdp_param_info = FSDPParamInfo(fsdp_state, flat_param, {})
        for idx, local_fqn in enumerate(flat_param._fqns):
            fqn = clean_tensor_name(prefix + local_fqn)
            if fqn in fqn_to_param_info:
                assert fqn_to_param_info[fqn].flat_param == flat_param
            fqn_to_param_info[fqn] = fsdp_param_info
            fsdp_param_info.param_indices[fqn] = idx

    def return_fn(fqn_to_param_info):
        return fqn_to_param_info

    fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
    # FlatParameter._fqns stores the local fqn, starting from the root of the
    # FSDP. Using _apply_to_modules() with model (may not be the FSDP root
    # module) allows us to construct the global fqn.
    return _apply_to_modules(
        model,
        module_fn,
        return_fn,
        [fqn for fqn, _ in model.named_parameters()],
        fqn_to_param_info,
    )


@dataclass
class StateInfo:
    tensors: Dict[str, _PosDimTensorInfo]
    scalar_tensors: Dict[str, torch.Tensor]
    non_tensors: Dict[str, Any]


@dataclass
class AllGatherInfo:
    tensors: List[torch.Tensor]
    numels: List[int]
    work: Optional[dist.Work]


def _all_gather_optim_state(
    fsdp_state: _FSDPState,
    optim_state: Dict[str, Any],
    group=None,
) -> Dict[str, Any]:
    """
    All-gathering state from all the ranks. This API is slow as it uses
    ``all_gather_object``. However, optim state_dict is not in the critical path.
    We can fuse the communication across differnt state if the performance
    becomes a problem.
    """
    # Allgather the scalar tensor state, non-tensor states and tensors metadata.
    processed_state = StateInfo({}, {}, {})
    for state_name, value in sorted_items(optim_state):
        if torch.is_tensor(value):
            if value.dim() == 0:
                # Ensure that `step` is on CPU.
                processed_state.scalar_tensors[state_name] = value.cpu()
            else:
                processed_state.tensors[state_name] = _PosDimTensorInfo(
                    value.shape, value.dtype
                )
        else:
            processed_state.non_tensors = value
    object_list: List[StateInfo] = [
        processed_state for _ in range(fsdp_state.world_size)
    ]
    dist.all_gather_object(object_list, processed_state, group=group)

    # Convert the gathered, pre-proccessed state of each rank to the original one.
    gathered_state: Dict[str, Any] = {}

    all_tensor_states = sorted(
        {n for state in object_list for n in state.tensors.keys()}
    )
    empty_ranks: Set[int] = set()
    for name in all_tensor_states:
        numels = []
        dtype = torch.float
        _empty_ranks: Set[int] = set()
        for rank, object_state in enumerate(object_list):
            numels.append(0)
            info = object_state.tensors.get(name, None)
            if info is not None:
                numels[-1] = info.shape.numel()
                dtype = info.dtype
            if numels[-1] == 0:
                _empty_ranks.add(rank)

        empty_func = functools.partial(
            torch.empty, dtype=dtype, device=fsdp_state.compute_device
        )
        if empty_ranks:
            assert empty_ranks == _empty_ranks
        empty_ranks = _empty_ranks
        local_state = optim_state.get(name, empty_func(0))
        local_state = local_state.to(fsdp_state.compute_device)
        tensors = [
            empty_func(numel) if rank != fsdp_state.rank else local_state
            for rank, numel in enumerate(numels)
        ]
        work = dist.all_gather(
            tensors, local_state, group=fsdp_state.process_group, async_op=True
        )
        gathered_state[name] = AllGatherInfo(tensors, numels, work)

    for rank, object_state in enumerate(object_list):
        if rank in empty_ranks:
            continue
        for name, non_tensor_value in object_state.non_tensors.items():
            curr_non_tensor_value = gathered_state.get(name, None)
            assert (
                curr_non_tensor_value is None
                or curr_non_tensor_value == non_tensor_value
            ), f"Different ranks have different values for {name}."
            gathered_state[name] = non_tensor_value

        for name, scalar_tensor_value in object_state.scalar_tensors.items():
            curr_scalar_tensor_value = gathered_state.get(name, None)
            assert curr_scalar_tensor_value is None or torch.equal(
                scalar_tensor_value, curr_scalar_tensor_value
            ), f"Different ranks have different values for {name}."
            gathered_state[name] = scalar_tensor_value

    for name, value in list(gathered_state.items()):
        if not isinstance(value, AllGatherInfo):
            continue
        assert value.work is not None
        value.work.wait()
        gathered_state[name] = torch.cat(
            [
                rank_tensor[:rank_numel]
                for rank_tensor, rank_numel in zip(value.tensors, value.numels)
                if rank_numel > 0
            ]
        )

    return gathered_state


def _gather_orig_param_state(
    fsdp_param_info: FSDPParamInfo,
    fqn: str,
    optim_state: Dict[str, Any],
    shard_state: bool,
    group=None,
) -> Dict[str, Any]:
    """
    Gather the optimizer state for the original parameter with the name ``fqn``.
    This API should only be used when ``use_orig_params`` is True.
    """
    fsdp_state = fsdp_param_info.state
    assert (
        fsdp_state._use_orig_params
    ), "_gather_orig_param_state only support use_orig_params=True case"
    flat_param = fsdp_param_info.flat_param
    param_idx = fsdp_param_info.param_indices[fqn]
    if (
        fsdp_state.world_size == 1
        or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
    ):
        return optim_state

    gathered_state = _all_gather_optim_state(fsdp_state, optim_state, group=group)

    # Unflatten state values.
    for state_name, value in list(gathered_state.items()):
        if not torch.is_tensor(value) or value.dim() == 0:
            continue

        value = value[: flat_param._numels[param_idx]].reshape(
            flat_param._shapes[param_idx]
        )
        if shard_state:
            assert fsdp_state.process_group is not None
            value = _ext_chunk_tensor(
                value,
                fsdp_state.rank,
                fsdp_state.world_size,
                torch.cuda.device_count(),
                fsdp_state.process_group,
            )
        value = value.cpu()
        gathered_state[state_name] = value
    return gathered_state


def _shard_orig_param_state(
    fsdp_param_info: FSDPParamInfo,
    fqn: str,
    optim_state: Dict[str, Any],
) -> Dict[str, Any]:
    """
    Shard the optimizer state for the original parameter with the name ``fqn``.
    This API should only be used when ``use_orig_params`` is True.
    """
    if not optim_state:
        return {}
    fsdp_state = fsdp_param_info.state
    flat_param = fsdp_param_info.flat_param
    param_idx = fsdp_param_info.param_indices[fqn]

    optim_state = _gather_state_dict(optim_state, fsdp_state.process_group)
    start, end = flat_param._shard_indices  # type: ignore[attr-defined]
    if not (start <= param_idx <= end and flat_param._shard_param_offsets):  # type: ignore[attr-defined]
        return {}
    param_start, param_end = flat_param._shard_param_offsets[param_idx - start]  # type: ignore[attr-defined]

    # Flatten and shard the state.
    new_optim_state: Dict[str, Any] = {}
    for state_name, value in optim_state.items():
        if torch.is_tensor(value) and value.dim() > 0:
            value = value.flatten()[param_start : param_end + 1]
        new_optim_state[state_name] = value
    return new_optim_state