Spaces:
Running
Running
File size: 15,405 Bytes
685cc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import sys
import os
import re
import json
import time
import shutil
import numpy as np
import gradio as gr
from datetime import datetime
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
from PIL import Image, ImageDraw
from skimage.measure import ransac
import matplotlib.pyplot as plt
from modules.latex2bbox_color import latex2bbox_color
from modules.tokenize_latex.tokenize_latex import tokenize_latex
from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform
DATA_ROOT = "output"
def gen_color_list(num=10, gap=15):
num += 1
single_num = 255 // gap + 1
max_num = single_num ** 3
num = min(num, max_num)
color_list = []
for idx in range(num):
R = idx // single_num**2
GB = idx % single_num**2
G = GB // single_num
B = GB % single_num
color_list.append((R*gap, G*gap, B*gap))
return color_list[1:]
def process_latex(groundtruths, predictions, user_id="test"):
data_root = DATA_ROOT
temp_dir = os.path.join(data_root, "temp_dir")
data_root = os.path.join(data_root, user_id)
output_dir_info = {}
input_args = []
for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]):
sub_temp_dir = os.path.join(temp_dir, f"{user_id}_{subset}")
os.makedirs(sub_temp_dir, exist_ok=True)
output_path = os.path.join(data_root, subset)
output_dir_info[output_path] = []
os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True)
total_color_list = gen_color_list(num=5800)
for idx, latex in enumerate(latex_list):
basename = f"sample_{idx}"
input_arg = latex, basename, output_path, sub_temp_dir, total_color_list
a = time.time()
latex2bbox_color(input_arg)
b = time.time()
for subset in ['gt', 'pred']:
shutil.rmtree(os.path.join(temp_dir, f"{user_id}_{subset}"))
def update_inliers(ori_inliers, sub_inliers):
inliers = np.copy(ori_inliers)
sub_idx = -1
for idx in range(len(ori_inliers)):
if ori_inliers[idx] == False:
sub_idx += 1
if sub_inliers[sub_idx] == True:
inliers[idx] = True
return inliers
def reshape_inliers(ori_inliers, sub_inliers):
inliers = np.copy(ori_inliers)
sub_idx = -1
for idx in range(len(ori_inliers)):
if ori_inliers[idx] == False:
sub_idx += 1
if sub_inliers[sub_idx] == True:
inliers[idx] = True
else:
inliers[idx] = False
return inliers
def evaluation(user_id="test"):
data_root = DATA_ROOT
data_root = os.path.join(data_root, user_id)
gt_box_dir = os.path.join(data_root, "gt")
pred_box_dir = os.path.join(data_root, "pred")
match_vis_dir = os.path.join(data_root, "vis_match")
os.makedirs(match_vis_dir, exist_ok=True)
max_iter = 3
min_samples = 3
residual_threshold = 25
max_trials = 50
metrics_per_img = {}
gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))]
for basename in gt_basename_list:
gt_valid, pred_valid = True, True
if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")):
gt_valid = False
else:
with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
box_gt = []
for line in f:
info = json.loads(line)
if info['bbox']:
box_gt.append(info)
if not box_gt:
gt_valid = False
if not gt_valid:
continue
if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")):
pred_valid = False
else:
with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
box_pred = []
for line in f:
info = json.loads(line)
if info['bbox']:
box_pred.append(info)
if not box_pred:
pred_valid = False
if not pred_valid:
metrics_per_img[basename] = {
"recall": 0,
"precision": 0,
"F1_score": 0,
}
continue
gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png")
pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png")
img_gt = Image.open(gt_img_path)
img_pred = Image.open(pred_img_path)
matcher = HungarianMatcher()
matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size)
src = []
dst = []
for (idx1, idx2) in matched_idxes:
x1min, y1min, x1max, y1max = box_gt[idx1]['bbox']
x2min, y2min, x2max, y2max = box_pred[idx2]['bbox']
x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2)
x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2)
src.append([y1_c, x1_c])
dst.append([y2_c, x2_c])
src = np.array(src)
dst = np.array(dst)
if src.shape[0] <= min_samples:
inliers = np.array([True for _ in matched_idxes])
else:
inliers = np.array([False for _ in matched_idxes])
for i in range(max_iter):
if src[inliers==False].shape[0] <= min_samples:
break
model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials)
if inliers_1 is not None and inliers_1.any():
inliers = update_inliers(inliers, inliers_1)
else:
break
if len(inliers[inliers==True]) >= len(matched_idxes):
break
for idx, (a,b) in enumerate(matched_idxes):
if inliers[idx] == True and matcher.cost['token'][a, b] == 1:
inliers[idx] = False
final_match_num = len(inliers[inliers==True])
recall = round(final_match_num/(len(box_gt)), 3)
precision = round(final_match_num/(len(box_pred)), 3)
F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3)
metrics_per_img[basename] = {
"recall": recall,
"precision": precision,
"F1_score": F1_score,
}
if True:
gap = 5
W1, H1 = img_gt.size
W2, H2 = img_pred.size
H = H1 + H2 + gap
W = max(W1, W2)
vis_img = Image.new('RGB', (W, H), (255, 255, 255))
vis_img.paste(img_gt, (0, 0))
vis_img.paste(Image.new('RGB', (W, gap), (0, 150, 200)), (0, H1))
vis_img.paste(img_pred, (0, H1+gap))
match_img = vis_img.copy()
match_draw = ImageDraw.Draw(match_img)
gt_matched_idx = {
a: flag
for (a,b), flag in
zip(matched_idxes, inliers)
}
pred_matched_idx = {
b: flag
for (a,b), flag in
zip(matched_idxes, inliers)
}
for idx, box in enumerate(box_gt):
if idx in gt_matched_idx and gt_matched_idx[idx]==True:
color = "green"
else:
color = "red"
x_min, y_min, x_max, y_max = box['bbox']
match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2)
for idx, box in enumerate(box_pred):
if idx in pred_matched_idx and pred_matched_idx[idx]==True:
color = "green"
else:
color = "red"
x_min, y_min, x_max, y_max = box['bbox']
match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2)
vis_img.save(os.path.join(match_vis_dir, basename+"_base.png"))
if W < 500:
padding = (500 - W)//2 + 1
reshape_match_img = Image.new('RGB', (500, H), (255, 255, 255))
reshape_match_img.paste(match_img, (padding, 0))
reshape_match_img.paste(Image.new('RGB', (500, gap), (0, 150, 200)), (0, H1))
reshape_match_img.save(os.path.join(match_vis_dir, basename+".png"))
else:
match_img.save(os.path.join(match_vis_dir, basename+".png"))
acc_list = [val['F1_score'] for _, val in metrics_per_img.items()]
metrics_res = {
"mean_score": round(np.mean(acc_list), 3),
"details": metrics_per_img
}
metric_res_path = os.path.join(data_root, "metrics_res.json")
with open(metric_res_path, "w") as f:
f.write(json.dumps(metrics_res, indent=2))
return metrics_res, metric_res_path, match_vis_dir
def calculate_metric_single(groundtruth, prediction):
user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
process_latex([groundtruth], [prediction], user_id)
metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
basename = "sample_0"
image_path = os.path.join(match_vis_dir, basename+".png")
sample = metrics_res["details"][basename]
score = sample['F1_score']
recall = sample['recall']
precision = sample['precision']
return score, recall, precision, gr.Image(image_path)
def calculate_metric_batch(json_input):
user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
with open(json_input.name, "r") as f:
input_data = json.load(f)
groundtruths = []
predictions = []
for item in input_data:
groundtruths.append(item['gt'])
predictions.append(item['pred'])
process_latex(groundtruths, predictions, user_id)
metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
return metric_res_path
def gradio_reset_single():
return gr.update(value=None, placeholder='type gt latex code here'), gr.update(value=None, placeholder='type pred latex code here'), \
gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def gradio_reset_batch():
return gr.update(value=None), gr.update(value=None)
def select_example1():
gt = "y = 2x + 3z"
pred = "y = 2z + 3x"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
def select_example2():
gt = "r = \\frac { \\alpha } { \\beta } \\vert \\sin \\beta \\left( \\sigma _ { 1 } \\pm \\sigma _ { 2 } \\right) \\vert"
pred = "r={\\frac{\\alpha}{\\beta}}|\\sin\\beta\\left(\\sigma_{2}+\\sigma_{1}\\right)|"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
def select_example3():
gt = "\\begin{array} { r l r } & { } & { \\mathbf { J } _ { L } = \\left( \\begin{array} { c c } { 0 } & { 0 } \\\\ { v _ { n } } & { 0 } \\end{array} \\right) , ~ \\mathbf { J } _ { R } = \\left( \\begin{array} { c c } { u _ { n - 1 } } & { 0 } \\\\ { 0 } & { 0 } \\end{array} \\right) , ~ } \\\\ & { } & {\\mathbf { K } = \\left( \\begin{array} { c c } { V _ { n - 1 } } & { u _ { n } } \\\\ { v _ { n - 1 } } & { V _ { n } } \\end{array} \\right) , } \\end{array}"
pred = "\\mathbf{J}_{U}={\\left(\\begin{array}{l l}{0}&{0}\\\\ {v_{n}}&{0}\\end{array}\\right)}\\,,\\ \\mathbf{J}_{R}={\\left(\\begin{array}{l l}{u_{n-1}}&{0}\\\\ {0}&{0}\\end{array}\\right)}\\,,\\mathbf{K}={\\left(\\begin{array}{l l}{V_{n-1}}&{u_{n}}\\\\ {v_{n-1}}&{V_{n}}\\end{array}\\right)}\\,,"
return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
if __name__ == "__main__":
title = """<h1 align="center">CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation</h1>"""
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Button(value="Quick Try: type latex code of gt and pred, get metrics and visualization.", interactive=False, variant="primary")
with gr.Row():
with gr.Column():
gt_input = gr.Textbox(label='gt', placeholder='type gt latex code here', interactive=True)
pred_input = gr.Textbox(label='pred', placeholder='type pred latex code here', interactive=True)
with gr.Row():
clear_single = gr.Button("Clear")
submit_single = gr.Button(value="Submit", interactive=True, variant="primary")
with gr.Accordion("Examples:"):
with gr.Row():
example1 = gr.Button("Example A(short)")
example2 = gr.Button("Example B(middle)")
example3 = gr.Button("Example C(long)")
with gr.Column():
with gr.Row():
score_output = gr.Number(label="F1 Score", interactive=False)
recall_output = gr.Number(label="Recall", interactive=False)
recision_output = gr.Number(label="Precision", interactive=False)
gr.Button(value="Visualization (green bbox means correcttlly matched, red bbox means missed or wrong.)", interactive=False)
vis_output = gr.Image(label=" ", interactive=False)
example1.click(select_example1, inputs=None, outputs=[gt_input, pred_input])
example2.click(select_example2, inputs=None, outputs=[gt_input, pred_input])
example3.click(select_example3, inputs=None, outputs=[gt_input, pred_input])
clear_single.click(gradio_reset_single, inputs=None, outputs=[gt_input, pred_input, score_output, recall_output, recision_output, vis_output])
submit_single.click(calculate_metric_single, inputs=[gt_input, pred_input], outputs=[score_output, recall_output, recision_output, vis_output])
# gr.Button(value="Batch Run: upload a json file and batch processing, this may take some times according to your latex amount and length.", interactive=False, variant="primary")
# with gr.Row():
# with gr.Column():
# json_input = gr.File(label="Input Json", file_types=[".json"])
# json_example = gr.File(label="Input Example", value="assets/example/input_example.json")
# with gr.Row():
# clear_batch = gr.Button("Clear")
# submit_batch = gr.Button(value="Submit", interactive=True, variant="primary")
# metric_output = gr.File(label="Output Metrics")
# clear_batch.click(gradio_reset_batch, inputs=None, outputs=[json_input, metric_output])
# submit_batch.click(calculate_metric_batch, inputs=[json_input], outputs=[metric_output])
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) |