File size: 15,405 Bytes
685cc58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import sys
import os
import re
import json
import time
import shutil
import numpy as np
import gradio as gr
from datetime import datetime
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool 
from PIL import Image, ImageDraw
from skimage.measure import ransac
import matplotlib.pyplot as plt

from modules.latex2bbox_color import latex2bbox_color
from modules.tokenize_latex.tokenize_latex import tokenize_latex
from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform


DATA_ROOT = "output"

def gen_color_list(num=10, gap=15):
    num += 1
    single_num = 255 // gap + 1
    max_num = single_num ** 3
    num = min(num, max_num)
    color_list = []
    for idx in range(num):
        R = idx // single_num**2
        GB = idx % single_num**2
        G = GB // single_num
        B = GB % single_num
        
        color_list.append((R*gap, G*gap, B*gap))
    return color_list[1:]
    
def process_latex(groundtruths, predictions, user_id="test"):
    data_root = DATA_ROOT
    temp_dir = os.path.join(data_root, "temp_dir")
    
    data_root = os.path.join(data_root, user_id)
    output_dir_info = {}
    input_args = []
    for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]):
        sub_temp_dir = os.path.join(temp_dir, f"{user_id}_{subset}")
        os.makedirs(sub_temp_dir, exist_ok=True)
        
        output_path = os.path.join(data_root, subset)
        output_dir_info[output_path] = []
    
        os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True)
        os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True)
        
        total_color_list = gen_color_list(num=5800)

        for idx, latex in enumerate(latex_list):
            basename = f"sample_{idx}"
            input_arg = latex, basename, output_path, sub_temp_dir, total_color_list
            a = time.time()
            latex2bbox_color(input_arg)
            b = time.time()
        
    for subset in ['gt', 'pred']:
        shutil.rmtree(os.path.join(temp_dir, f"{user_id}_{subset}"))    
    

def update_inliers(ori_inliers, sub_inliers):
    inliers = np.copy(ori_inliers)
    sub_idx = -1
    for idx in range(len(ori_inliers)):
        if ori_inliers[idx] == False:
            sub_idx += 1
            if sub_inliers[sub_idx] == True:
                inliers[idx] = True
    return inliers

def reshape_inliers(ori_inliers, sub_inliers):
    inliers = np.copy(ori_inliers)
    sub_idx = -1
    for idx in range(len(ori_inliers)):
        if ori_inliers[idx] == False:
            sub_idx += 1
            if sub_inliers[sub_idx] == True:
                inliers[idx] = True
        else:
            inliers[idx] = False
    return inliers


def evaluation(user_id="test"):
    data_root = DATA_ROOT
    data_root = os.path.join(data_root, user_id)
    gt_box_dir = os.path.join(data_root, "gt")
    pred_box_dir = os.path.join(data_root, "pred")
    match_vis_dir = os.path.join(data_root, "vis_match")
    os.makedirs(match_vis_dir, exist_ok=True)
    
    max_iter = 3
    min_samples = 3
    residual_threshold = 25
    max_trials = 50
    
    metrics_per_img = {}
    gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))]
    for basename in gt_basename_list:
        gt_valid, pred_valid = True, True
        if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")):
            gt_valid = False
        else:
            with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
                box_gt = []
                for line in f:
                    info = json.loads(line)
                    if info['bbox']:
                        box_gt.append(info)
            if not box_gt:
                gt_valid = False
        if not gt_valid:
            continue
        
        if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")):
            pred_valid = False
        else:
            with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
                box_pred = []
                for line in f:
                    info = json.loads(line)
                    if info['bbox']:
                        box_pred.append(info)
            if not box_pred:
                pred_valid = False
        if not pred_valid:
            metrics_per_img[basename] = {
                "recall": 0,
                "precision": 0,
                "F1_score": 0,
            }
            continue       
        gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png")
        pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png")
        
        img_gt = Image.open(gt_img_path)
        img_pred = Image.open(pred_img_path)
        
        matcher = HungarianMatcher()
        matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size)
        src = []
        dst = []
        for (idx1, idx2) in matched_idxes:
            x1min, y1min, x1max, y1max = box_gt[idx1]['bbox']
            x2min, y2min, x2max, y2max = box_pred[idx2]['bbox']
            x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2)
            x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2)
            src.append([y1_c, x1_c])
            dst.append([y2_c, x2_c])
            
        src = np.array(src)
        dst = np.array(dst)
        if src.shape[0] <= min_samples:
            inliers = np.array([True for _ in matched_idxes])
        else:
            inliers = np.array([False for _ in matched_idxes])
            for i in range(max_iter):
                if src[inliers==False].shape[0] <= min_samples:
                    break
                model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials)
                if inliers_1 is not None and inliers_1.any():
                    inliers = update_inliers(inliers, inliers_1)
                else:
                    break
                if len(inliers[inliers==True]) >= len(matched_idxes):
                    break

        for idx, (a,b) in enumerate(matched_idxes):
            if inliers[idx] == True and matcher.cost['token'][a, b] == 1:
                inliers[idx] = False
        
        final_match_num = len(inliers[inliers==True])
        recall = round(final_match_num/(len(box_gt)), 3)
        precision = round(final_match_num/(len(box_pred)), 3)
        F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3)
        metrics_per_img[basename] = {
            "recall": recall,
            "precision": precision,
            "F1_score": F1_score,
        }
        
        if True:
            gap = 5
            W1, H1 = img_gt.size
            W2, H2 = img_pred.size
            H = H1 + H2 + gap
            W = max(W1, W2)

            vis_img = Image.new('RGB', (W, H), (255, 255, 255))
            vis_img.paste(img_gt, (0, 0))
            vis_img.paste(Image.new('RGB', (W, gap), (0, 150, 200)), (0, H1))
            vis_img.paste(img_pred, (0, H1+gap))
            
            match_img = vis_img.copy()
            match_draw = ImageDraw.Draw(match_img)

            gt_matched_idx = {
                a: flag
                for (a,b), flag in 
                zip(matched_idxes, inliers)
            }
            pred_matched_idx = {
                b: flag
                for (a,b), flag in 
                zip(matched_idxes, inliers)
            }
            
            for idx, box in enumerate(box_gt):
                if idx in gt_matched_idx and gt_matched_idx[idx]==True:
                    color = "green"
                else:
                    color = "red"
                x_min, y_min, x_max, y_max = box['bbox']
                match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2)
                
            for idx, box in enumerate(box_pred):
                if idx in pred_matched_idx and pred_matched_idx[idx]==True:
                    color = "green"
                else:
                    color = "red"
                x_min, y_min, x_max, y_max = box['bbox']
                match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2)
            
            vis_img.save(os.path.join(match_vis_dir, basename+"_base.png"))
            if W < 500:
                padding = (500 - W)//2 + 1
                reshape_match_img = Image.new('RGB', (500, H), (255, 255, 255))
                reshape_match_img.paste(match_img, (padding, 0))
                reshape_match_img.paste(Image.new('RGB', (500, gap), (0, 150, 200)), (0, H1))
                reshape_match_img.save(os.path.join(match_vis_dir, basename+".png"))
            else:
                match_img.save(os.path.join(match_vis_dir, basename+".png"))
            
    acc_list = [val['F1_score'] for _, val in metrics_per_img.items()]
    metrics_res = {
        "mean_score": round(np.mean(acc_list), 3),
        "details": metrics_per_img
    }
    metric_res_path = os.path.join(data_root, "metrics_res.json")
    with open(metric_res_path, "w") as f:
        f.write(json.dumps(metrics_res, indent=2))
    return metrics_res, metric_res_path, match_vis_dir
    
def calculate_metric_single(groundtruth, prediction):
    user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
    process_latex([groundtruth], [prediction], user_id)
    metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
    basename = "sample_0"
    image_path = os.path.join(match_vis_dir, basename+".png")
    sample = metrics_res["details"][basename]
    score = sample['F1_score']
    recall = sample['recall']
    precision = sample['precision']
    return score, recall, precision, gr.Image(image_path)

def calculate_metric_batch(json_input):
    user_id = datetime.now().strftime('%Y%m%d-%H%M%S')
    with open(json_input.name, "r") as f:
        input_data = json.load(f)
    groundtruths = []
    predictions = []
    for item in input_data:
        groundtruths.append(item['gt'])
        predictions.append(item['pred'])
    process_latex(groundtruths, predictions, user_id)
    metrics_res, metric_res_path, match_vis_dir = evaluation(user_id)
    return metric_res_path

def gradio_reset_single():
    return gr.update(value=None, placeholder='type gt latex code here'), gr.update(value=None, placeholder='type pred latex code here'), \
        gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
        
def gradio_reset_batch():
    return gr.update(value=None), gr.update(value=None)

def select_example1():
    gt = "y = 2x + 3z"
    pred = "y = 2z + 3x"
    return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')

def select_example2():
    gt = "r = \\frac { \\alpha } { \\beta } \\vert \\sin \\beta \\left( \\sigma _ { 1 } \\pm \\sigma _ { 2 } \\right) \\vert"
    pred = "r={\\frac{\\alpha}{\\beta}}|\\sin\\beta\\left(\\sigma_{2}+\\sigma_{1}\\right)|"
    return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')
    
def select_example3():
    gt = "\\begin{array} { r l r } & { } & { \\mathbf { J } _ { L } = \\left( \\begin{array} { c c } { 0 } & { 0 } \\\\ { v _ { n } } & { 0 } \\end{array} \\right) , ~ \\mathbf { J } _ { R } = \\left( \\begin{array} { c c } { u _ { n - 1 } } & { 0 } \\\\ { 0 } & { 0 } \\end{array} \\right) , ~ } \\\\ & { } & {\\mathbf { K } = \\left( \\begin{array} { c c } { V _ { n - 1 } } & { u _ { n } } \\\\ { v _ { n - 1 } } & { V _ { n } } \\end{array} \\right) , } \\end{array}"
    pred = "\\mathbf{J}_{U}={\\left(\\begin{array}{l l}{0}&{0}\\\\ {v_{n}}&{0}\\end{array}\\right)}\\,,\\ \\mathbf{J}_{R}={\\left(\\begin{array}{l l}{u_{n-1}}&{0}\\\\ {0}&{0}\\end{array}\\right)}\\,,\\mathbf{K}={\\left(\\begin{array}{l l}{V_{n-1}}&{u_{n}}\\\\ {v_{n-1}}&{V_{n}}\\end{array}\\right)}\\,,"
    return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here')



if __name__ == "__main__":
    title = """<h1 align="center">CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation</h1>"""
    
    with gr.Blocks() as demo:
        gr.Markdown(title)

        # gr.Button(value="Quick Try: type latex code of gt and pred, get metrics and visualization.", interactive=False, variant="primary")
        
        with gr.Row():
            with gr.Column():
                gt_input = gr.Textbox(label='gt', placeholder='type gt latex code here', interactive=True)
                pred_input = gr.Textbox(label='pred', placeholder='type pred latex code here', interactive=True)
                with gr.Row():
                    clear_single = gr.Button("Clear")
                    submit_single = gr.Button(value="Submit", interactive=True, variant="primary")
                with gr.Accordion("Examples:"):
                    with gr.Row():
                        example1 = gr.Button("Example A(short)")
                        example2 = gr.Button("Example B(middle)")
                        example3 = gr.Button("Example C(long)")
            with gr.Column():
                with gr.Row():
                    score_output = gr.Number(label="F1 Score", interactive=False)
                    recall_output = gr.Number(label="Recall", interactive=False)
                    recision_output = gr.Number(label="Precision", interactive=False)
                gr.Button(value="Visualization (green bbox means correcttlly matched, red bbox means missed or wrong.)", interactive=False)
                vis_output = gr.Image(label=" ", interactive=False)
        
        example1.click(select_example1, inputs=None, outputs=[gt_input, pred_input])
        example2.click(select_example2, inputs=None, outputs=[gt_input, pred_input])
        example3.click(select_example3, inputs=None, outputs=[gt_input, pred_input])
        
        clear_single.click(gradio_reset_single, inputs=None, outputs=[gt_input, pred_input, score_output, recall_output, recision_output, vis_output])
        submit_single.click(calculate_metric_single, inputs=[gt_input, pred_input], outputs=[score_output, recall_output, recision_output, vis_output])
        
        
        # gr.Button(value="Batch Run: upload a json file and batch processing, this may take some times according to your latex amount and length.", interactive=False, variant="primary")
        
        # with gr.Row():
        #     with gr.Column():
        #         json_input = gr.File(label="Input Json", file_types=[".json"])
        #         json_example = gr.File(label="Input Example", value="assets/example/input_example.json")
        #         with gr.Row():
        #             clear_batch = gr.Button("Clear")
        #             submit_batch = gr.Button(value="Submit", interactive=True, variant="primary")

        #     metric_output = gr.File(label="Output Metrics")

        # clear_batch.click(gradio_reset_batch, inputs=None, outputs=[json_input, metric_output])
        # submit_batch.click(calculate_metric_batch, inputs=[json_input], outputs=[metric_output])
                    
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)