Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,136 Bytes
3c75092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import abc
import gradio as gr
from lb_info import *
with gr.Blocks() as demo:
struct = load_results()
timestamp = struct['time']
EVAL_TIME = format_timestamp(timestamp)
results = struct['results']
N_MODEL = len(results)
N_DATA = len(results['LLaVA-v1.5-7B']) - 1
DATASETS = list(results['LLaVA-v1.5-7B'])
DATASETS.remove('META')
print(DATASETS)
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_MODEL, N_DATA, EVAL_TIME))
structs = [abc.abstractproperty() for _ in range(N_DATA)]
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('π
OpenVLM Main Leaderboard', elem_id='main', id=0):
gr.Markdown(LEADERBOARD_MD['MAIN'])
table, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
type_map = check_box['type_map']
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label="Evaluation Dimension",
interactive=True,
)
headers = check_box['essential'] + checkbox_group.value
with gr.Row():
model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True
)
model_type = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type="pandas",
datatype=[type_map[x] for x in headers],
interactive=False,
visible=True)
def filter_df(fields, model_size, model_type):
headers = check_box['essential'] + fields
df = cp.deepcopy(table)
df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
comp = gr.components.DataFrame(
value=df[headers],
type="pandas",
datatype=[type_map[x] for x in headers],
interactive=False,
visible=True)
return comp
for cbox in [checkbox_group, model_size, model_type]:
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component)
with gr.TabItem('π About', elem_id='about', id=1):
gr.Markdown(urlopen(VLMEVALKIT_README).read().decode())
for i, dataset in enumerate(DATASETS):
with gr.TabItem(f'π {dataset} Leaderboard', elem_id=dataset, id=i + 2):
if dataset in LEADERBOARD_MD:
gr.Markdown(LEADERBOARD_MD[dataset])
s = structs[i]
s.table, s.check_box = BUILD_L2_DF(results, dataset)
s.type_map = s.check_box['type_map']
s.checkbox_group = gr.CheckboxGroup(
choices=s.check_box['all'],
value=s.check_box['required'],
label=f"{dataset} CheckBoxes",
interactive=True,
)
s.headers = s.check_box['essential'] + s.checkbox_group.value
with gr.Row():
s.model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True
)
s.model_type = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True
)
s.data_component = gr.components.DataFrame(
value=s.table[s.headers],
type="pandas",
datatype=[s.type_map[x] for x in s.headers],
interactive=False,
visible=True)
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
def filter_df_l2(dataset_name, fields, model_size, model_type):
s = structs[DATASETS.index(dataset_name)]
headers = s.check_box['essential'] + fields
df = cp.deepcopy(s.table)
df['flag'] = [model_size_flag(x, model_size) for x in df['Parameters (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
comp = gr.components.DataFrame(
value=df[headers],
type="pandas",
datatype=[s.type_map[x] for x in headers],
interactive=False,
visible=True)
return comp
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
cbox.change(fn=filter_df_l2, inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type], outputs=s.data_component)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button')
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0') |