File size: 5,847 Bytes
a6e43e6
 
 
 
 
 
 
 
 
e401827
a6e43e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e401827
 
443e281
 
a6e43e6
 
 
 
e401827
443e281
 
 
 
a6e43e6
 
 
 
 
 
 
 
 
 
 
64d336c
 
 
a6e43e6
 
 
c0679db
 
a6e43e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443e281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e401827
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen

import gradio as gr
import numpy as np
import pandas as pd

from meta_data import DEFAULT_BENCH, META_FIELDS, URL


def listinstr(lst, s):
    assert isinstance(lst, list)
    for item in lst:
        if item in s:
            return True
    return False


def load_results():
    data = json.loads(urlopen(URL).read())
    return data


def nth_large(val, vals):
    return sum([1 for v in vals if v > val]) + 1


def format_timestamp(timestamp):
    date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
    time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
    return date + ' ' + time


def model_size_flag(sz, FIELDS):
    if pd.isna(sz) and 'Unknown' in FIELDS:
        return True
    if pd.isna(sz):
        return False
    if '<10B' in FIELDS and sz < 10:
        return True
    if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
        return True
    if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
        return True
    if '>40B' in FIELDS and sz >= 40:
        return True
    return False


def model_type_flag(line, FIELDS):
    if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
        return True
    if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
        return True
    if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
        return True
    return False


def BUILD_L1_DF(results, fields):
    check_box = {}
    check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
    # revise there to set default dataset
    check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH
    check_box['avg'] = ['Avg Score', 'Avg Rank']
    check_box['all'] = check_box['avg'] + fields
    type_map = defaultdict(lambda: 'number')
    type_map['Method'] = 'html'
    type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
    check_box['type_map'] = type_map

    res = generate_table(results, fields)
    df = pd.DataFrame(res)
    df = df.sort_values('Avg Score')
    df = df.iloc[::-1]
    return df, check_box


def BUILD_L2_DF(results, dataset):
    res = defaultdict(list)
    fields = list(list(results.values())[0][dataset].keys())
    non_overall_fields = [x for x in fields if 'Overall' not in x]
    overall_fields = [x for x in fields if 'Overall' in x]
    if dataset == 'MME':
        non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
        overall_fields = overall_fields + ['Perception', 'Cognition']
    if dataset == 'OCRBench':
        non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)]
        overall_fields = ['Final Score']

    for m in results:
        item = results[m]
        if dataset not in item:
            continue
        meta = item['META']
        for k in META_FIELDS:
            if k == 'Parameters (B)':
                param = meta['Parameters']
                res[k].append(float(param.replace('B', '')) if param != '' else None)
            elif k == 'Method':
                name, url = meta['Method']
                res[k].append(f'<a href="{url}">{name}</a>')
            else:
                res[k].append(meta[k])
        fields = [x for x in fields]

        for d in non_overall_fields:
            res[d].append(item[dataset][d])
        for d in overall_fields:
            res[d].append(item[dataset][d])

    df = pd.DataFrame(res)
    all_fields = overall_fields + non_overall_fields
    # Use the first 5 non-overall fields as required fields
    required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]

    if 'Overall' in overall_fields:
        df = df.sort_values('Overall')
        df = df.iloc[::-1]

    check_box = {}
    check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model']
    check_box['required'] = required_fields
    check_box['all'] = all_fields
    type_map = defaultdict(lambda: 'number')
    type_map['Method'] = 'html'
    type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
    check_box['type_map'] = type_map
    return df, check_box


def generate_table(results, fields, df=None):
    res = defaultdict(list)
    for i, m in enumerate(results):
        item = results[m]
        meta = item['META']
        for k in META_FIELDS:
            if k == 'Parameters (B)':
                param = meta['Parameters']
                res[k].append(float(param.replace('B', '')) if param != '' else None)
            elif k == 'Method':
                name, url = meta['Method']
                res[k].append(f'<a href="{url}">{name}</a>')
                res['name'].append(name)
            else:
                res[k].append(meta[k])
        scores, ranks = [], []
        for d in fields:
            key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
            res[d].append(item[d][key_name])
            if d == 'MME':
                scores.append(item[d][key_name] / 28)
            elif d == 'OCRBench':
                scores.append(item[d][key_name] / 10)
            else:
                scores.append(item[d][key_name])
            ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values()]))
        res['Avg Score'].append(round(np.mean(scores), 1))
        res['Avg Rank'].append(round(np.mean(ranks), 2))
    if df is None:
        return res
    else:
        res = pd.DataFrame(res)
        df.set_index('name', inplace=True)
        res.set_index('name', inplace=True)
        df.update(res)
        df = df.sort_values('Avg Score')
        df = df.iloc[::-1]
    return df