Spaces:
Build error
Build error
File size: 13,127 Bytes
3683a4c 29ff8b7 3683a4c bccf193 3683a4c 12fd562 3683a4c 12fd562 102f4ad 12fd562 a805f1e 12fd562 6a0f6c2 102f4ad 3683a4c 43078fa 3683a4c 613a516 3683a4c 12fd562 3683a4c fe79a15 3683a4c fe79a15 3683a4c fe79a15 3683a4c 613a516 fe79a15 3683a4c 12fd562 3683a4c 12fd562 3683a4c 6a0f6c2 12fd562 fe79a15 613a516 6a0f6c2 12fd562 3683a4c 102f4ad 3683a4c 6a0f6c2 3683a4c 12fd562 3683a4c 6a0f6c2 102f4ad 8598d1e 3683a4c 102f4ad 3683a4c 102f4ad 3683a4c 354b508 68d8859 3683a4c 354b508 3683a4c 0264353 3683a4c 12fd562 102f4ad 3683a4c 102f4ad 3683a4c 6a0f6c2 3683a4c 102f4ad 12fd562 3683a4c e33c38c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import datetime
import json
import os
from itertools import repeat
import ee
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import yaml
from utils import duckdb_queries as dq
from . import logging
GEE_SERVICE_ACCOUNT = (
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
)
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
indices (string[], required): Array of index names to include in aggregate index generation.
"""
def __init__(self):
# Authenticate to GEE & DuckDB
self._authenticate_ee(GEE_SERVICE_ACCOUNT)
self.roi = None
self.project_name = None
self.project_geometry = None
self.project_centroid = None
self.indices = None
self.metric_name = None
def set_metric(self, metric_name):
# Use defined subset of indices
indices_file = f'metrics/{metric_name.replace(" ", "_")}.yaml'
self.indices = self._load_indices(indices_file)
self.metric_name = metric_name
def set_project(self, project_name):
self.project_name = project_name
self.project_geometry = dq.get_project_geometry(self.project_name)
self.project_centroid = dq.get_project_centroid(self.project_name)
# to-do: refactor to involve fewer transformations
_polygon = json.dumps(
json.loads(self.project_geometry[0][0])["features"][0]["geometry"]
)
# to-do: don't use self.roi and instead pass patameter strategically
self.roi = ee.Geometry.Polygon(json.loads(_polygon)["coordinates"])
def _cloudfree(self, gee_path, daterange):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path).filterDate(*daterange).filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
)
return composite_cloudfree.clip(self.roi)
@staticmethod
def _load_indices(indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
logging.error(e)
return None
def generate_index(self, index_config, year):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
# Calculate date range, assume 1 year
start_date = str(datetime.date(year, 1, 1))
end_date = str(datetime.date(year, 12, 31))
daterange = [start_date, end_date]
# Calculate index based on type
logging.info(
f"Generating index: {index_config['name']} of type {index_config['gee_type']}"
)
match index_config["gee_type"]:
case "image":
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "image_collection":
dataset = (
ee.ImageCollection(index_config["gee_path"])
.filterBounds(self.roi)
.map(lambda image: image.clip(self.roi))
.mean()
)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "feature_collection":
dataset = (
ee.Image()
.float()
.paint(
ee.FeatureCollection(index_config["gee_path"]),
index_config["select"],
)
.clip(self.roi)
)
case "algebraic":
image = self._cloudfree(index_config["gee_path"], daterange)
# to-do: params should come from index_config
dataset = image.normalizedDifference(["B4", "B3"])
case _:
dataset = None
if not dataset:
raise Exception("Failed to generate dataset.")
# Normalize to a range of [0, 1]
min_val = 0
max_val = 1
if type(index_config['min'])==int or type(index_config['min']==float):
min_val = index_config['min']
if str(index_config['max'])=='roi_area':
max_val = self.roi.area().getInfo() # in m^2
elif type(index_config['max'])==int or type(index_config['max']==float):
max_val = index_config['max']
dataset.subtract(min_val)\
.divide(max_val - min_val)
logging.info(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key, year):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config, year)
logging.info(f"Calculating zonal mean for {index_key}...")
out = dataset.reduceRegion(
**{
"reducer": ee.Reducer.mean(),
"geometry": self.roi,
"scale": 2000, # map scale
"bestEffort": True,
"maxPixels": 1e3,
}
).getInfo()
if index_config.get("bandname"):
return out[index_config.get("bandname")]
logging.info(f"Calculated zonal mean for {index_key}.")
return out
def generate_composite_index_df(self, year):
data = {
"metric": self.metric_name,
"year": year,
"centroid": "",
"project_name": "",
"value": list(map(self.zonal_mean_index, self.indices, repeat(year))),
# to-do: calculate with duckdb; also, should be part of project table instead
"area": self.roi.area().getInfo(), # m^2
"geojson": "",
"coefficient": list(map(lambda x: self.indices[x]['coefficient'], self.indices))
}
logging.info("data", data)
df = pd.DataFrame(data)
return df
@staticmethod
def _authenticate_ee(ee_service_account):
"""
Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
"""
logging.info("Authenticating to Google Earth Engine...")
credentials = ee.ServiceAccountCredentials(
ee_service_account, key_data=os.environ["ee_service_account"]
)
ee.Initialize(credentials)
logging.info("Authenticated to Google Earth Engine.")
def _calculate_yearly_index(self, years):
dfs = []
logging.info(years)
# to-do: pararelize?
for year in years:
logging.info(year)
df = self.generate_composite_index_df(year)
dfs.append(df)
# Concatenate all dataframes
df_concat = pd.concat(dfs)
df_concat["centroid"] = str(self.project_centroid)
df_concat["project_name"] = self.project_name
df_concat["geojson"] = str(self.project_geometry)
return df_concat.round(2)
# h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12\
@staticmethod
def _latlon_to_config(longitudes=None, latitudes=None):
"""Function documentation:\n
Basic framework adopted from Krichardson under the following thread:
https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7
# NOTE:
# THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
# in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.
Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
the center coordinate tuple of all provided coordinate tuples.
"""
# Check whether both latitudes and longitudes have been passed,
# or if the list lenghts don't match
if (latitudes is None or longitudes is None) or (
len(latitudes) != len(longitudes)
):
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
return 0, (0, 0)
# Get the boundary-box
b_box = {}
b_box["height"] = latitudes.max() - latitudes.min()
b_box["width"] = longitudes.max() - longitudes.min()
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
# get the area of the bounding box in order to calculate a zoom-level
area = b_box["height"] * b_box["width"]
# * 1D-linear interpolation with numpy:
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
# as these variables are antiproportional
zoom = np.interp(
x=area,
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
fp=[20, 15, 14, 13, 12, 7, 5],
)
# Finally, return the zoom level and the associated boundary-box center coordinates
return zoom, b_box["center"]
def show_project_map(self):
features = json.loads(self.project_geometry[0][0].replace("'", '"'))["features"]
geometry = features[0]["geometry"]
longitudes = np.array(geometry["coordinates"])[0, :, 0]
latitudes = np.array(geometry["coordinates"])[0, :, 1]
zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
fig = go.Figure(
go.Scattermapbox(
mode="markers",
lon=[bbox_center[0]],
lat=[bbox_center[1]],
marker={"size": 20, "color": ["cyan"]},
)
)
fig.update_layout(
mapbox={
"style": "satellite",
"accesstoken":os.environ['MAPBOX_ACCESS_TOKEN'],
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
"zoom": zoom,
"layers": [
{
"source": {
"type": "FeatureCollection",
"features": [{"type": "Feature", "geometry": geometry}],
},
"type": "fill",
"below": "traces",
"color": "royalblue",
"opacity": 0.5,
}
],
},
margin={"l": 0, "r": 0, "b": 0, "t": 0},
)
return fig
def calculate_score(self, start_year, end_year):
years = []
# Create `bioindicator` table IF NOT EXISTS.
dq.get_or_create_bioindicator_table()
for year in range(start_year, end_year+1):
row_exists = dq.check_if_project_exists_for_year(self.project_name, year)
if not row_exists:
years.append(year)
if len(years) > 0:
df = self._calculate_yearly_index(years)
# Write score table to `_temptable`
dq.write_score_to_temptable(df)
# UPSERT project record
dq.upsert_project_record()
logging.info("upserted records into motherduck")
scores = dq.get_project_scores(self.project_name, start_year, end_year)
scores.columns = scores.columns.str.replace('_', ' ').str.title()
if 'Area' in scores.columns:
scores['Area'] /= 1000**2
scores.rename(columns={'Area':'Area (km^2)'}, inplace=True)
if 'Score' in scores.columns:
scores['Score'] /= 1000**2
scores.rename(columns={'Score': 'Score (Area * Value)'}, inplace=True)
# Round scores to 4 significant figures
scores = scores.apply(
lambda x: ['%.4g'%x_i for x_i in x]
if pd.api.types.is_numeric_dtype(x)
else x)
return scores
def get_metric_file(self):
# Use defined subset of indices
indices_file = f'metrics/{self.metric_name.replace(" ", "_")}.yaml'
with open(indices_file, "r") as stream:
return stream.read() |