Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,810 Bytes
2b62c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import itertools
import os
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from datasets import load_dataset
import style
TAB_STATE = 0 # FIXME
GSM8K_TASK_GROUP_NAME = "GSM8K" # FIXME
def init():
global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_dict
repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
split_name = os.getenv("OGX_LEADERBOARD_DATASET_SPLIT")
dataset = load_dataset(repo_id, config_name, split=split_name)
hidden_df = dataset.to_pandas()
task_group_names_list = hidden_df["Task_Group"].unique().tolist()
task_group_type_df = hidden_df[["Task_Group", "Task_Type"]].drop_duplicates()
task_group_type_dict = task_group_type_df.set_index("Task_Group")["Task_Type"].to_dict()
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
hidden_df = hidden_df.pivot_table(
columns=["Task_Group", "Few_Shot", "Language"],
index=["Model_Name"],
values="Value",
dropna=False,
).reset_index(inplace=False)
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
task_cols = get_task_columns(df)
if fewshot:
renamer = {col: f"{col} ({task_groups_shots_dict[col]}-shot)" for col in task_cols if col in task_groups_shots_dict}
df.rename(columns=renamer, inplace=True)
task_cols = renamer.values()
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
def get_task_columns(df: pd.DataFrame) -> pd.DataFrame:
l = list(df.columns)
l.remove("Model_Name")
l.remove("Average")
l.remove("Type")
return l
def get_models(df: pd.DataFrame) -> pd.DataFrame:
return df["Model_Name"].unique()
def filter_type(df: pd.DataFrame, model_types: list[str]) -> pd.DataFrame:
"""Keep only rows for which model type is in list of types"""
return df[df["Type"].isin(model_types)]
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
"""Keep only rows for which model name matches search query"""
query = query.replace(";", "|")
return df[df["Model_Name"].str.contains(query, case=False)]
def aggregate_langs(df: pd.DataFrame, tasks: list, langs: list):
"""Aggregates results over langs for each task in tasks.
If a language does not exist for a task, the aggregate for
that task will be shown as NaN.
"""
langs_lower = [item.lower() for item in langs]
df.columns = ["_".join(filter(None, col)) for col in df.columns]
colset = set(df.columns)
for t in tasks:
cols = [(f"{a}_{b}") for a, b in itertools.product([t], langs_lower)]
if set(cols).issubset(colset):
df.loc[:, t] = df[cols].mean(axis=1, skipna=False)
else:
df.loc[:, t] = np.nan
df.loc[:, "Average"] = df[tasks].mean(axis=1)
return df[["Type", "Model_Name", "Average"] + tasks]
def select_shots(df: pd.DataFrame, fewshot: bool = False):
cols = [col for col in df.columns if col[1] == fewshot] + []
# Move model name and type icon to the end
cols.append(("Model_Name", "", ""))
cols.append(("Type", "", ""))
return df[cols].droplevel(level=1, axis="columns")
def update_df(
tasks: list[str],
model_query: str,
langs: list[str],
model_types: list[str],
fewshot: bool = False,
format: bool = True,
) -> pd.DataFrame:
"""Return a filtered dataframe according to selected models, tasks and
languages. The format flag controls whether the output dataframe should
be formatted to tw significant figures.
"""
# keep only selected shots
df = select_shots(hidden_df, fewshot)
# aggregate results over languages per task
df = aggregate_langs(df, tasks, langs)
# filter models by search bar and model type
df = search_model(df, model_query)
df = filter_type(df, model_types)
if format:
return sort_cols(df, fewshot).style.format(precision=2, decimal=".")
else:
return sort_cols(df, fewshot)
def make_plot(df: pd.DataFrame):
df.columns = df.loc["Model_Name"]
df = df.drop("Model_Name")
df = df.reset_index(names="task")
if len(df.columns) > 2:
fig = px.line(data_frame=df, x="task", y=df.columns, markers=True, width=1200)
else:
fig = px.bar(data_frame=df, x="task", y=df.columns[-1], width=1200)
fig.update_xaxes(type="category")
return fig
def update_plot(
tasks: list[str],
model_query: str,
langs: list[str],
model_types: list[str],
fewshot: bool = False,
):
df = update_df(tasks, model_query, langs, model_types, fewshot, False).transpose()
plot = make_plot(df)
return plot
def fix_zeroshot(tasks: list[str | int | float], fewshot: bool = False):
global TAB_STATE
selected_task_type = get_selected_task_type(TAB_STATE)
choices = task_groups_with_task_type(selected_task_type)
if not fewshot:
try:
choices.remove(GSM8K_TASK_GROUP_NAME)
except ValueError:
pass
value = [v for v in tasks if v in choices]
else:
if TAB_STATE == 0:
value = [v for v in tasks if v in choices] + [GSM8K_TASK_GROUP_NAME]
elif TAB_STATE == 1:
value = [v for v in tasks if v in choices]
shown_tasks = gr.CheckboxGroup(
choices=choices,
value=value,
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
return shown_tasks
def update_tab_tasks(id: int, fewshot: bool = False):
# when the tab is changed, update the TAB_STATE accordingly
global TAB_STATE
TAB_STATE = id
selected_task_type = get_selected_task_type(TAB_STATE)
choices = task_groups_with_task_type(selected_task_type)
if not fewshot:
try:
choices.remove(GSM8K_TASK_GROUP_NAME)
except ValueError:
pass
values = choices.copy()
shown_tasks = gr.CheckboxGroup(
choices=choices,
value=values,
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
if id == 0:
# switching to accuracy tab, default to fewshot
fewshot = gr.Radio(
choices=[("0-Shot", False), ("Few-shot", True)],
value=True,
label="Select evaluation type",
interactive=True,
scale=29,
)
elif id == 1:
# switching to translation tab, default to 0-shot and disable selection
fewshot = gr.Radio(
choices=[("0-Shot", False), ("Few-shot", True)],
value=False,
label="Select evaluation type",
interactive=False,
scale=29,
)
return [shown_tasks, fewshot]
def get_selected_task_type(task_type_id):
task_types = {0: "accuracy", 1: "misc"}
selected_task_type = task_types[task_type_id]
return selected_task_type
def task_groups_with_task_type(selected_task_type):
choices = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if task_type == selected_task_type]
return choices
init()
|