File size: 7,810 Bytes
2b62c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import itertools
import os

import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from datasets import load_dataset

import style

TAB_STATE = 0  # FIXME
GSM8K_TASK_GROUP_NAME = "GSM8K"  # FIXME


def init():
    global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_dict

    repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
    config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
    split_name = os.getenv("OGX_LEADERBOARD_DATASET_SPLIT")

    dataset = load_dataset(repo_id, config_name, split=split_name)
    hidden_df = dataset.to_pandas()

    task_group_names_list = hidden_df["Task_Group"].unique().tolist()
    task_group_type_df = hidden_df[["Task_Group", "Task_Type"]].drop_duplicates()
    task_group_type_dict = task_group_type_df.set_index("Task_Group")["Task_Type"].to_dict()
    task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
    task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
    languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
    model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
    model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()

    hidden_df = hidden_df.pivot_table(
        columns=["Task_Group", "Few_Shot", "Language"],
        index=["Model_Name"],
        values="Value",
        dropna=False,
    ).reset_index(inplace=False)

    hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])


def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
    task_cols = get_task_columns(df)
    if fewshot:
        renamer = {col: f"{col} ({task_groups_shots_dict[col]}-shot)" for col in task_cols if col in task_groups_shots_dict}
        df.rename(columns=renamer, inplace=True)
        task_cols = renamer.values()
    return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)


def get_task_columns(df: pd.DataFrame) -> pd.DataFrame:
    l = list(df.columns)
    l.remove("Model_Name")
    l.remove("Average")
    l.remove("Type")
    return l


def get_models(df: pd.DataFrame) -> pd.DataFrame:
    return df["Model_Name"].unique()


def filter_type(df: pd.DataFrame, model_types: list[str]) -> pd.DataFrame:
    """Keep only rows for which model type is in list of types"""
    return df[df["Type"].isin(model_types)]


def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
    """Keep only rows for which model name matches search query"""
    query = query.replace(";", "|")
    return df[df["Model_Name"].str.contains(query, case=False)]


def aggregate_langs(df: pd.DataFrame, tasks: list, langs: list):
    """Aggregates results over langs for each task in tasks.
    If a language does not exist for a task, the aggregate for
    that task will be shown as NaN.
    """

    langs_lower = [item.lower() for item in langs]
    df.columns = ["_".join(filter(None, col)) for col in df.columns]
    colset = set(df.columns)
    for t in tasks:
        cols = [(f"{a}_{b}") for a, b in itertools.product([t], langs_lower)]
        if set(cols).issubset(colset):
            df.loc[:, t] = df[cols].mean(axis=1, skipna=False)
        else:
            df.loc[:, t] = np.nan
    df.loc[:, "Average"] = df[tasks].mean(axis=1)
    return df[["Type", "Model_Name", "Average"] + tasks]


def select_shots(df: pd.DataFrame, fewshot: bool = False):
    cols = [col for col in df.columns if col[1] == fewshot] + []
    # Move model name and type icon to the end
    cols.append(("Model_Name", "", ""))
    cols.append(("Type", "", ""))
    return df[cols].droplevel(level=1, axis="columns")


def update_df(
    tasks: list[str],
    model_query: str,
    langs: list[str],
    model_types: list[str],
    fewshot: bool = False,
    format: bool = True,
) -> pd.DataFrame:
    """Return a filtered dataframe according to selected models, tasks and
    languages. The format flag controls whether the output dataframe should
    be formatted to tw significant figures.
    """
    # keep only selected shots
    df = select_shots(hidden_df, fewshot)

    # aggregate results over languages per task
    df = aggregate_langs(df, tasks, langs)

    # filter models by search bar and model type
    df = search_model(df, model_query)
    df = filter_type(df, model_types)

    if format:
        return sort_cols(df, fewshot).style.format(precision=2, decimal=".")
    else:
        return sort_cols(df, fewshot)


def make_plot(df: pd.DataFrame):
    df.columns = df.loc["Model_Name"]
    df = df.drop("Model_Name")
    df = df.reset_index(names="task")
    if len(df.columns) > 2:
        fig = px.line(data_frame=df, x="task", y=df.columns, markers=True, width=1200)
    else:
        fig = px.bar(data_frame=df, x="task", y=df.columns[-1], width=1200)
    fig.update_xaxes(type="category")
    return fig


def update_plot(
    tasks: list[str],
    model_query: str,
    langs: list[str],
    model_types: list[str],
    fewshot: bool = False,
):
    df = update_df(tasks, model_query, langs, model_types, fewshot, False).transpose()
    plot = make_plot(df)
    return plot


def fix_zeroshot(tasks: list[str | int | float], fewshot: bool = False):
    global TAB_STATE
    selected_task_type = get_selected_task_type(TAB_STATE)
    choices = task_groups_with_task_type(selected_task_type)
    if not fewshot:
        try:
            choices.remove(GSM8K_TASK_GROUP_NAME)
        except ValueError:
            pass
        value = [v for v in tasks if v in choices]
    else:
        if TAB_STATE == 0:
            value = [v for v in tasks if v in choices] + [GSM8K_TASK_GROUP_NAME]
        elif TAB_STATE == 1:
            value = [v for v in tasks if v in choices]
    shown_tasks = gr.CheckboxGroup(
        choices=choices,
        value=value,
        label="Select tasks to show",
        elem_id="column-select",
        interactive=True,
        scale=50,
    )
    return shown_tasks


def update_tab_tasks(id: int, fewshot: bool = False):
    # when the tab is changed, update the TAB_STATE accordingly
    global TAB_STATE
    TAB_STATE = id
    selected_task_type = get_selected_task_type(TAB_STATE)
    choices = task_groups_with_task_type(selected_task_type)
    if not fewshot:
        try:
            choices.remove(GSM8K_TASK_GROUP_NAME)
        except ValueError:
            pass
    values = choices.copy()
    shown_tasks = gr.CheckboxGroup(
        choices=choices,
        value=values,
        label="Select tasks to show",
        elem_id="column-select",
        interactive=True,
        scale=50,
    )
    if id == 0:
        # switching to accuracy tab, default to fewshot
        fewshot = gr.Radio(
            choices=[("0-Shot", False), ("Few-shot", True)],
            value=True,
            label="Select evaluation type",
            interactive=True,
            scale=29,
        )
    elif id == 1:
        # switching to translation tab, default to 0-shot and disable selection
        fewshot = gr.Radio(
            choices=[("0-Shot", False), ("Few-shot", True)],
            value=False,
            label="Select evaluation type",
            interactive=False,
            scale=29,
        )
    return [shown_tasks, fewshot]


def get_selected_task_type(task_type_id):
    task_types = {0: "accuracy", 1: "misc"}
    selected_task_type = task_types[task_type_id]
    return selected_task_type


def task_groups_with_task_type(selected_task_type):
    choices = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if task_type == selected_task_type]

    return choices


init()