File size: 6,445 Bytes
2b62c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import core as core
from style import CSS, T_SYMBOLS, TITLE
demo = gr.Blocks(css=CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(
"This is a (WIP) collection of multilingual evaluation results obtained using our fork of the LM-evaluation-harness (https://github.com/OpenGPTX/lm-evaluation-harness), based on https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.\
Note that currently, not all benchmarks are available in all languages, results are averaged over those languages under the selected ones for which the benchmark is available.",
elem_classes="markdown-text",
)
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
label="Search models",
placeholder=" π Separate multiple queries with ';' and press ENTER...",
show_label=True,
elem_id="search-bar",
)
model_types = gr.CheckboxGroup(
label="Select model type",
choices=[
(
f"Pretrained {T_SYMBOLS['pretrained']}",
T_SYMBOLS["pretrained"],
),
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
],
value=list(T_SYMBOLS.values()),
)
with gr.Row():
langs_bar = gr.CheckboxGroup(
choices=core.languages_list,
value=core.languages_list,
label="Select languages to average over",
elem_id="column-select",
interactive=True,
scale=6,
)
with gr.Column(scale=1):
clear = gr.ClearButton(
langs_bar,
value="Deselect all languages",
size="sm",
scale=1,
)
select = gr.Button(
value="Select all languages", size="sm", scale=1
)
def update_bar():
langs_bar = gr.CheckboxGroup(
choices=core.languages_list,
value=core.languages_list,
label="Select languages to average over",
elem_id="column-select",
interactive=True,
)
return langs_bar
select.click(update_bar, inputs=[], outputs=langs_bar)
with gr.Row():
acc_task_group_names = core.task_groups_with_task_type("accuracy")
shown_tasks = gr.CheckboxGroup(
choices=acc_task_group_names,
value=acc_task_group_names,
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
fewshot = gr.Radio(
choices=[("0-Shot", False), ("Few-shot", True)],
value=True,
label="Select evaluation type",
interactive=True,
scale=29,
)
fewshot.change(
core.fix_zeroshot, [shown_tasks, fewshot], shown_tasks
)
clear = gr.ClearButton(
shown_tasks, value="Deselect all tasks", size="sm", scale=21
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem(
"π
LLM accuracy benchmark", elem_id="llm-benchmark-tab-table-acc", id=0
) as acc:
leaderboard_table = gr.Dataframe()
with gr.TabItem(
"π LLM translation benchmark",
elem_id="llm-benchmark-tab-table-misc",
id=1,
) as misc:
leaderboard_table_misc = gr.Dataframe()
with gr.TabItem("Plots", elem_id="llm-plot-tab", id=2) as plot:
leaderboard_plot = gr.Plot(elem_id="plot")
acc.select(
lambda x: core.update_tab_tasks(0, x),
inputs=fewshot,
outputs=[shown_tasks, fewshot],
)
misc.select(
lambda x: core.update_tab_tasks(1, x),
inputs=fewshot,
outputs=[shown_tasks, fewshot],
)
for comp, fn in [
(search_bar, "submit"),
(langs_bar, "change"),
(shown_tasks, "change"),
(fewshot, "change"),
(model_types, "change"),
]:
getattr(comp, fn)(
core.update_df,
[shown_tasks, search_bar, langs_bar, model_types, fewshot],
leaderboard_table,
)
getattr(comp, fn)(
core.update_df,
[shown_tasks, search_bar, langs_bar, model_types, fewshot],
leaderboard_table_misc,
)
getattr(comp, fn)(
core.update_plot,
[shown_tasks, search_bar, langs_bar, model_types, fewshot],
leaderboard_plot,
)
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot],
outputs=leaderboard_table,
)
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot],
outputs=leaderboard_table_misc,
)
gr.Blocks.load(
block=demo,
fn=core.update_plot,
inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot],
outputs=leaderboard_plot,
)
demo.launch()
|