Spaces:
Sleeping
Sleeping
File size: 11,262 Bytes
a40ca17 75cad04 a40ca17 75cad04 a40ca17 75cad04 a40ca17 75cad04 a40ca17 75cad04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
from typing import Dict, SupportsFloat
import gymnasium as gym
import numpy as np
import torch
from gymnasium import wrappers
from huggingface_hub import HfApi
from huggingface_hub.utils._errors import EntryNotFoundError
from src.logging import setup_logger
logger = setup_logger(__name__)
API = HfApi(token=os.environ.get("TOKEN"))
ALL_ENV_IDS = [
"AdventureNoFrameskip-v4",
"AirRaidNoFrameskip-v4",
"AlienNoFrameskip-v4",
"AmidarNoFrameskip-v4",
"AssaultNoFrameskip-v4",
"AsterixNoFrameskip-v4",
"AsteroidsNoFrameskip-v4",
"AtlantisNoFrameskip-v4",
"BankHeistNoFrameskip-v4",
"BattleZoneNoFrameskip-v4",
"BeamRiderNoFrameskip-v4",
"BerzerkNoFrameskip-v4",
"BowlingNoFrameskip-v4",
"BoxingNoFrameskip-v4",
"BreakoutNoFrameskip-v4",
"CarnivalNoFrameskip-v4",
"CentipedeNoFrameskip-v4",
"ChopperCommandNoFrameskip-v4",
"CrazyClimberNoFrameskip-v4",
"DefenderNoFrameskip-v4",
"DemonAttackNoFrameskip-v4",
"DoubleDunkNoFrameskip-v4",
"ElevatorActionNoFrameskip-v4",
"EnduroNoFrameskip-v4",
"FishingDerbyNoFrameskip-v4",
"FreewayNoFrameskip-v4",
"FrostbiteNoFrameskip-v4",
"GopherNoFrameskip-v4",
"GravitarNoFrameskip-v4",
"HeroNoFrameskip-v4",
"IceHockeyNoFrameskip-v4",
"JamesbondNoFrameskip-v4",
"JourneyEscapeNoFrameskip-v4",
"KangarooNoFrameskip-v4",
"KrullNoFrameskip-v4",
"KungFuMasterNoFrameskip-v4",
"MontezumaRevengeNoFrameskip-v4",
"MsPacmanNoFrameskip-v4",
"NameThisGameNoFrameskip-v4",
"PhoenixNoFrameskip-v4",
"PitfallNoFrameskip-v4",
"PongNoFrameskip-v4",
"PooyanNoFrameskip-v4",
"PrivateEyeNoFrameskip-v4",
"QbertNoFrameskip-v4",
"RiverraidNoFrameskip-v4",
"RoadRunnerNoFrameskip-v4",
"RobotankNoFrameskip-v4",
"SeaquestNoFrameskip-v4",
"SkiingNoFrameskip-v4",
"SolarisNoFrameskip-v4",
"SpaceInvadersNoFrameskip-v4",
"StarGunnerNoFrameskip-v4",
"TennisNoFrameskip-v4",
"TimePilotNoFrameskip-v4",
"TutankhamNoFrameskip-v4",
"UpNDownNoFrameskip-v4",
"VentureNoFrameskip-v4",
"VideoPinballNoFrameskip-v4",
"WizardOfWorNoFrameskip-v4",
"YarsRevengeNoFrameskip-v4",
"ZaxxonNoFrameskip-v4",
# Box2D
"BipedalWalker-v3",
"BipedalWalkerHardcore-v3",
"CarRacing-v2",
"LunarLander-v2",
"LunarLanderContinuous-v2",
# Toy text
"Blackjack-v1",
"CliffWalking-v0",
"FrozenLake-v1",
"FrozenLake8x8-v1",
# Classic control
"Acrobot-v1",
"CartPole-v1",
"MountainCar-v0",
"MountainCarContinuous-v0",
"Pendulum-v1",
# MuJoCo
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Humanoid-v4",
"HumanoidStandup-v4",
"InvertedDoublePendulum-v4",
"InvertedPendulum-v4",
"Pusher-v4",
"Reacher-v4",
"Swimmer-v4",
"Walker2d-v4",
]
NUM_EPISODES = 50
class NoopResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
"""
Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
:param env: Environment to wrap
:param noop_max: Maximum value of no-ops to run
"""
def __init__(self, env: gym.Env, noop_max: int = 30) -> None:
super().__init__(env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == "NOOP" # type: ignore[attr-defined]
def reset(self, **kwargs):
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
assert noops > 0
obs = np.zeros(0)
info: Dict = {}
for _ in range(noops):
obs, _, terminated, truncated, info = self.env.step(self.noop_action)
if terminated or truncated:
obs, info = self.env.reset(**kwargs)
return obs, info
class FireResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
"""
Take action on reset for environments that are fixed until firing.
:param env: Environment to wrap
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
assert env.unwrapped.get_action_meanings()[1] == "FIRE" # type: ignore[attr-defined]
assert len(env.unwrapped.get_action_meanings()) >= 3 # type: ignore[attr-defined]
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, terminated, truncated, _ = self.env.step(1)
if terminated or truncated:
self.env.reset(**kwargs)
obs, _, terminated, truncated, _ = self.env.step(2)
if terminated or truncated:
self.env.reset(**kwargs)
return obs, {}
class EpisodicLifeEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
"""
Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
:param env: Environment to wrap
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.lives = 0
self.was_real_done = True
def step(self, action: int):
obs, reward, terminated, truncated, info = self.env.step(action)
self.was_real_done = terminated or truncated
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
if 0 < lives < self.lives:
# for Qbert sometimes we stay in lives == 0 condition for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
terminated = True
self.lives = lives
return obs, reward, terminated, truncated, info
def reset(self, **kwargs):
"""
Calls the Gym environment reset, only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
:param kwargs: Extra keywords passed to env.reset() call
:return: the first observation of the environment
"""
if self.was_real_done:
obs, info = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, terminated, truncated, info = self.env.step(0)
# The no-op step can lead to a game over, so we need to check it again
# to see if we should reset the environment and avoid the
# monitor.py `RuntimeError: Tried to step environment that needs reset`
if terminated or truncated:
obs, info = self.env.reset(**kwargs)
self.lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
return obs, info
class MaxAndSkipEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
"""
Return only every ``skip``-th frame (frameskipping)
and return the max between the two last frames.
:param env: Environment to wrap
:param skip: Number of ``skip``-th frame
The same action will be taken ``skip`` times.
"""
def __init__(self, env: gym.Env, skip: int = 4) -> None:
super().__init__(env)
# most recent raw observations (for max pooling across time steps)
assert env.observation_space.dtype is not None, "No dtype specified for the observation space"
assert env.observation_space.shape is not None, "No shape defined for the observation space"
self._obs_buffer = np.zeros((2, *env.observation_space.shape), dtype=env.observation_space.dtype)
self._skip = skip
def step(self, action: int):
"""
Step the environment with the given action
Repeat action, sum reward, and max over last observations.
:param action: the action
:return: observation, reward, terminated, truncated, information
"""
total_reward = 0.0
terminated = truncated = False
for i in range(self._skip):
obs, reward, terminated, truncated, info = self.env.step(action)
done = terminated or truncated
if i == self._skip - 2:
self._obs_buffer[0] = obs
if i == self._skip - 1:
self._obs_buffer[1] = obs
total_reward += float(reward)
if done:
break
# Note that the observation on the done=True frame
# doesn't matter
max_frame = self._obs_buffer.max(axis=0)
return max_frame, total_reward, terminated, truncated, info
class ClipRewardEnv(gym.RewardWrapper):
"""
Clip the reward to {+1, 0, -1} by its sign.
:param env: Environment to wrap
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
def reward(self, reward: SupportsFloat) -> float:
"""
Bin reward to {+1, 0, -1} by its sign.
:param reward:
:return:
"""
return np.sign(float(reward))
def make(env_id):
def thunk():
env = gym.make(env_id)
env = wrappers.RecordEpisodeStatistics(env)
if "NoFrameskip" in env_id:
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = ClipRewardEnv(env)
env = wrappers.ResizeObservation(env, (84, 84))
env = wrappers.GrayScaleObservation(env)
env = wrappers.FrameStack(env, 4)
return env
return thunk
def evaluate(repo_id, revision, env_id):
tags = API.model_info(repo_id, revision=revision).tags
# Check if the agent exists
try:
agent_path = API.hf_hub_download(repo_id=repo_id, filename="agent.pt")
except EntryNotFoundError:
logger.error("Agent not found")
return None
# Check safety
security = next(iter(API.get_paths_info(repo_id, "agent.pt", expand=True))).security
if security is None or "safe" not in security:
logger.warn("Agent safety not available")
# return None
elif not security["safe"]:
logger.error("Agent not safe")
return None
# Load the agent
try:
agent = torch.jit.load(agent_path)
except Exception as e:
logger.error(f"Error loading agent: {e}")
return None
# Evaluate the agent on the environments
envs = gym.vector.SyncVectorEnv([make(env_id) for _ in range(1)])
observations, _ = envs.reset()
episodic_returns = []
while len(episodic_returns) < NUM_EPISODES:
actions = agent(torch.tensor(observations)).numpy()
observations, _, _, _, infos = envs.step(actions)
if "final_info" in infos:
for info in infos["final_info"]:
if info is None or "episode" not in info:
continue
episodic_returns.append(float(info["episode"]["r"]))
return episodic_returns
|