File size: 5,603 Bytes
5645efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import flax.linen as nn
import jax
import jax.numpy as jnp
import re
import numpy as np
import functools
from PIL import Image

### Postprocessing Utils for Segmentation Tokens
### Segmentation tokens are passed to another VAE which decodes them to a mask

_MODEL_PATH = 'vae-oid.npz'

_SEGMENT_DETECT_RE = re.compile(
    r'(.*?)' +
    r'<loc(\d{4})>' * 4 + r'\s*' +
    '(?:%s)?' % (r'<seg(\d{3})>' * 16) +
    r'\s*([^;<>]+)? ?(?:; )?',
)
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']


def parse_segmentation(input_image,inference_output):
  objs = extract_objs(inference_output.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
  labels = set(obj.get('name') for obj in objs if obj.get('name'))
  color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
  highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
  annotated_img = (
    input_image,
    [
        (
            obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
            obj['name'] or '',
        )
        for obj in objs
        if 'mask' in obj or 'xyxy' in obj
    ],
  )
  has_annotations = bool(annotated_img[1])
  return annotated_img


def _get_params(checkpoint):
  """Converts PyTorch checkpoint to Flax params."""

  def transp(kernel):
    return np.transpose(kernel, (2, 3, 1, 0))

  def conv(name):
    return {
        'bias': checkpoint[name + '.bias'],
        'kernel': transp(checkpoint[name + '.weight']),
    }

  def resblock(name):
    return {
        'Conv_0': conv(name + '.0'),
        'Conv_1': conv(name + '.2'),
        'Conv_2': conv(name + '.4'),
    }

  return {
      '_embeddings': checkpoint['_vq_vae._embedding'],
      'Conv_0': conv('decoder.0'),
      'ResBlock_0': resblock('decoder.2.net'),
      'ResBlock_1': resblock('decoder.3.net'),
      'ConvTranspose_0': conv('decoder.4'),
      'ConvTranspose_1': conv('decoder.6'),
      'ConvTranspose_2': conv('decoder.8'),
      'ConvTranspose_3': conv('decoder.10'),
      'Conv_1': conv('decoder.12'),
  }


def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
  batch_size, num_tokens = codebook_indices.shape
  assert num_tokens == 16, codebook_indices.shape
  unused_num_embeddings, embedding_dim = embeddings.shape

  encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
  encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
  return encodings


@functools.cache
def _get_reconstruct_masks():
  """Reconstructs masks from codebook indices.
  Returns:
    A function that expects indices shaped `[B, 16]` of dtype int32, each
    ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
    `[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
  """

  class ResBlock(nn.Module):
    features: int

    @nn.compact
    def __call__(self, x):
      original_x = x
      x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
      x = nn.relu(x)
      x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
      x = nn.relu(x)
      x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
      return x + original_x

  class Decoder(nn.Module):
    """Upscales quantized vectors to mask."""

    @nn.compact
    def __call__(self, x):
      num_res_blocks = 2
      dim = 128
      num_upsample_layers = 4

      x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
      x = nn.relu(x)

      for _ in range(num_res_blocks):
        x = ResBlock(features=dim)(x)

      for _ in range(num_upsample_layers):
        x = nn.ConvTranspose(
            features=dim,
            kernel_size=(4, 4),
            strides=(2, 2),
            padding=2,
            transpose_kernel=True,
        )(x)
        x = nn.relu(x)
        dim //= 2

      x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)

      return x

  def reconstruct_masks(codebook_indices):
    quantized = _quantized_values_from_codebook_indices(
        codebook_indices, params['_embeddings']
    )
    return Decoder().apply({'params': params}, quantized)

  with open(_MODEL_PATH, 'rb') as f:
    params = _get_params(dict(np.load(f)))

  return jax.jit(reconstruct_masks, backend='cpu')
def extract_objs(text, width, height, unique_labels=False):
  """Returns objs for a string with "<loc>" and "<seg>" tokens."""
  objs = []
  seen = set()
  while text:
    m = _SEGMENT_DETECT_RE.match(text)
    if not m:
      break
    print("m", m)
    gs = list(m.groups())
    before = gs.pop(0)
    name = gs.pop()
    y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
    
    y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
    seg_indices = gs[4:20]
    if seg_indices[0] is None:
      mask = None
    else:
      seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
      m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
      m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
      m64 = Image.fromarray((m64 * 255).astype('uint8'))
      mask = np.zeros([height, width])
      if y2 > y1 and x2 > x1:
        mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0

    content = m.group()
    if before:
      objs.append(dict(content=before))
      content = content[len(before):]
    while unique_labels and name in seen:
      name = (name or '') + "'"
    seen.add(name)
    objs.append(dict(
        content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
    text = text[len(before) + len(content):]

  if text:
    objs.append(dict(content=text))

  return objs

#########