File size: 10,012 Bytes
42af69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33a1c6
42af69b
 
 
 
 
 
d33a1c6
42af69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3e192
 
 
1d9b661
 
42af69b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import cv2
import numpy as np
from onnx import numpy_helper
import onnx
import os
from PIL import Image
from matplotlib.pyplot import imshow
import onnxruntime as rt
from scipy import special
import colorsys
import random
import gradio as gr

def image_preprocess(image, target_size, gt_boxes=None):

    ih, iw = target_size
    h, w, _ = image.shape

    scale = min(iw/w, ih/h)
    nw, nh = int(scale * w), int(scale * h)
    image_resized = cv2.resize(image, (nw, nh))

    image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0)
    dw, dh = (iw - nw) // 2, (ih-nh) // 2
    image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized
    image_padded = image_padded / 255.

    if gt_boxes is None:
        return image_padded

    else:
        gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw
        gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh
        return image_padded, gt_boxes
        
input_size = 416

os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/yolov4/model/yolov4.onnx")

# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
# based on the build flags) when instantiating InferenceSession.
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
# rt.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
sess = rt.InferenceSession("yolov4.onnx")

outputs = sess.get_outputs()



def get_anchors(anchors_path, tiny=False):
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = np.array(anchors.split(','), dtype=np.float32)
    return anchors.reshape(3, 3, 2)

def postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=[1,1,1]):
    '''define anchor boxes'''
    for i, pred in enumerate(pred_bbox):
        conv_shape = pred.shape
        output_size = conv_shape[1]
        conv_raw_dxdy = pred[:, :, :, :, 0:2]
        conv_raw_dwdh = pred[:, :, :, :, 2:4]
        xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
        xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)

        xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
        xy_grid = xy_grid.astype(np.float)

        pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i]
        pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i])
        pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)

    pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox]
    pred_bbox = np.concatenate(pred_bbox, axis=0)
    return pred_bbox


def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold):
    '''remove boundary boxs with a low detection probability'''
    valid_scale=[0, np.inf]
    pred_bbox = np.array(pred_bbox)

    pred_xywh = pred_bbox[:, 0:4]
    pred_conf = pred_bbox[:, 4]
    pred_prob = pred_bbox[:, 5:]

    # # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax)
    pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5,
                                pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1)
    # # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org)
    org_h, org_w = org_img_shape
    resize_ratio = min(input_size / org_w, input_size / org_h)

    dw = (input_size - resize_ratio * org_w) / 2
    dh = (input_size - resize_ratio * org_h) / 2

    pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio
    pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio

    # # (3) clip some boxes that are out of range
    pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]),
                                np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1)
    invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3]))
    pred_coor[invalid_mask] = 0

    # # (4) discard some invalid boxes
    bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1))
    scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1]))

    # # (5) discard some boxes with low scores
    classes = np.argmax(pred_prob, axis=-1)
    scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes]
    score_mask = scores > score_threshold
    mask = np.logical_and(scale_mask, score_mask)
    coors, scores, classes = pred_coor[mask], scores[mask], classes[mask]

    return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1)

def bboxes_iou(boxes1, boxes2):
    '''calculate the Intersection Over Union value'''
    boxes1 = np.array(boxes1)
    boxes2 = np.array(boxes2)

    boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
    boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])

    left_up       = np.maximum(boxes1[..., :2], boxes2[..., :2])
    right_down    = np.minimum(boxes1[..., 2:], boxes2[..., 2:])

    inter_section = np.maximum(right_down - left_up, 0.0)
    inter_area    = inter_section[..., 0] * inter_section[..., 1]
    union_area    = boxes1_area + boxes2_area - inter_area
    ious          = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)

    return ious

def nms(bboxes, iou_threshold, sigma=0.3, method='nms'):
    """
    :param bboxes: (xmin, ymin, xmax, ymax, score, class)

    Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
          https://github.com/bharatsingh430/soft-nms
    """
    classes_in_img = list(set(bboxes[:, 5]))
    best_bboxes = []

    for cls in classes_in_img:
        cls_mask = (bboxes[:, 5] == cls)
        cls_bboxes = bboxes[cls_mask]

        while len(cls_bboxes) > 0:
            max_ind = np.argmax(cls_bboxes[:, 4])
            best_bbox = cls_bboxes[max_ind]
            best_bboxes.append(best_bbox)
            cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]])
            iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
            weight = np.ones((len(iou),), dtype=np.float32)

            assert method in ['nms', 'soft-nms']

            if method == 'nms':
                iou_mask = iou > iou_threshold
                weight[iou_mask] = 0.0

            if method == 'soft-nms':
                weight = np.exp(-(1.0 * iou ** 2 / sigma))

            cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
            score_mask = cls_bboxes[:, 4] > 0.
            cls_bboxes = cls_bboxes[score_mask]

    return best_bboxes

def read_class_names(class_file_name):
    '''loads class name from a file'''
    names = {}
    with open(class_file_name, 'r') as data:
        for ID, name in enumerate(data):
            names[ID] = name.strip('\n')
    return names

def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True):
    """
    bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
    """

    num_classes = len(classes)
    image_h, image_w, _ = image.shape
    hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))

    random.seed(0)
    random.shuffle(colors)
    random.seed(None)

    for i, bbox in enumerate(bboxes):
        coor = np.array(bbox[:4], dtype=np.int32)
        fontScale = 0.5
        score = bbox[4]
        class_ind = int(bbox[5])
        bbox_color = colors[class_ind]
        bbox_thick = int(0.6 * (image_h + image_w) / 600)
        c1, c2 = (coor[0], coor[1]), (coor[2], coor[3])
        cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)

        if show_label:
            bbox_mess = '%s: %.2f' % (classes[class_ind], score)
            t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0]
            cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1)
            cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA)

    return image
 
def inference(img):   
  original_image = cv2.imread(img)
  original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
  original_image_size = original_image.shape[:2]
  
  image_data = image_preprocess(np.copy(original_image), [input_size, input_size])
  image_data = image_data[np.newaxis, ...].astype(np.float32)
  
  print("Preprocessed image shape:",image_data.shape) # shape of the preprocessed input
  
  output_names = list(map(lambda output: output.name, outputs))
  input_name = sess.get_inputs()[0].name
  
  detections = sess.run(output_names, {input_name: image_data})
  print("Output shape:", list(map(lambda detection: detection.shape, detections)))
  
  ANCHORS = "./yolov4_anchors.txt"
  STRIDES = [8, 16, 32]
  XYSCALE = [1.2, 1.1, 1.05]
  
  ANCHORS = get_anchors(ANCHORS)
  STRIDES = np.array(STRIDES)
  
  
  
  pred_bbox = postprocess_bbbox(detections, ANCHORS, STRIDES, XYSCALE)
  bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
  bboxes = nms(bboxes, 0.213, method='nms')
  image = draw_bbox(original_image, bboxes)
  
  image = Image.fromarray(image)
  return image
 
title="YOLOv4"
description="YOLOv4 optimizes the speed and accuracy of object detection. It is two times faster than EfficientDet. It improves YOLOv3's AP and FPS by 10% and 12%, respectively, with mAP50 of 52.32 on the COCO 2017 dataset and FPS of 41.7 on Tesla 100." 
examples=[["example.png"]]
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil"),title=title,description=description,examples=examples).launch()