Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,612 Bytes
f75daf5 be527a9 f75daf5 7804c1f f75daf5 7804c1f f75daf5 be527a9 508744a 36e2d86 3166d00 be527a9 f75daf5 7804c1f f75daf5 7804c1f f75daf5 be527a9 f75daf5 7804c1f f75daf5 be527a9 f75daf5 be527a9 f75daf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from optimum.exporters.tasks import TasksManager
from optimum.exporters.onnx import OnnxConfigWithPast, export, validate_model_outputs
from tempfile import TemporaryDirectory
from transformers import AutoConfig, AutoTokenizer, is_torch_available
from pathlib import Path
import os
import shutil
import argparse
from typing import Optional, Tuple, List
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions
from huggingface_hub.file_download import repo_folder_name
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
return discussion
def convert_onnx(model_id: str, task: str, folder: str) -> List:
# Allocate the model
model = TasksManager.get_model_from_task(task, model_id, framework="pt")
model_type = model.config.model_type.replace("_", "-")
model_name = getattr(model, "name", None)
onnx_config_constructor = TasksManager.get_exporter_config_constructor(
model_type, "onnx", task=task, model_name=model_name
)
onnx_config = onnx_config_constructor(model.config)
needs_pad_token_id = (
isinstance(onnx_config, OnnxConfigWithPast)
and getattr(model.config, "pad_token_id", None) is None
and task in ["sequence_classification"]
)
if needs_pad_token_id:
#if args.pad_token_id is not None:
# model.config.pad_token_id = args.pad_token_id
try:
tok = AutoTokenizer.from_pretrained(model_id)
model.config.pad_token_id = tok.pad_token_id
except Exception:
raise ValueError(
"Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument"
)
# Ensure the requested opset is sufficient
opset = onnx_config.DEFAULT_ONNX_OPSET
output = Path(folder).joinpath("model.onnx")
onnx_inputs, onnx_outputs = export(
model,
onnx_config,
opset,
output,
)
atol = onnx_config.ATOL_FOR_VALIDATION
if isinstance(atol, dict):
atol = atol[task.replace("-with-past", "")]
try:
validate_model_outputs(onnx_config, model, output, onnx_outputs, atol)
print(f"All good, model saved at: {output}")
except ValueError:
print(f"An error occured, but the model was saved at: {output.as_posix()}")
n_files = len([name for name in os.listdir(folder) if os.path.isfile(os.path.join(folder, name)) and not name.startswith(".")])
if n_files == 1:
operations = [CommitOperationAdd(path_in_repo=file_name, path_or_fileobj=os.path.join(folder, file_name)) for file_name in os.listdir(folder)]
else:
operations = [CommitOperationAdd(path_in_repo=os.path.join("onnx", file_name), path_or_fileobj=os.path.join(folder, file_name)) for file_name in os.listdir(folder)]
return operations
def convert(api: "HfApi", model_id: str, task: str, force: bool = False) -> Tuple[int, "CommitInfo"]:
pr_title = "Adding ONNX file of this model"
info = api.model_info(model_id)
filenames = set(s.rfilename for s in info.siblings)
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_id)
except Exception as e:
return f"### Error: {e}. Please pass explicitely the task as it could not be infered.", None
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
pr = previous_pr(api, model_id, pr_title)
if "model.onnx" in filenames and not force:
raise Exception(f"Model {model_id} is already converted, skipping..")
elif pr is not None and not force:
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
new_pr = pr
raise Exception(f"Model {model_id} already has an open PR check out {url}")
else:
operations = convert_onnx(model_id, task, folder)
new_pr = api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=pr_title,
create_pr=True,
)
finally:
shutil.rmtree(folder)
return "0", new_pr
if __name__ == "__main__":
DESCRIPTION = """
Simple utility tool to convert automatically a model on the hub to onnx format.
It is PyTorch exclusive for now.
It works by downloading the weights (PT), converting them locally, and uploading them back
as a PR on the hub.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"--model_id",
type=str,
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
)
parser.add_argument(
"--task",
type=str,
help="The task the model is performing",
)
parser.add_argument(
"--force",
action="store_true",
help="Create the PR even if it already exists of if the model was already converted.",
)
args = parser.parse_args()
api = HfApi()
convert(api, args.model_id, task=args.task, force=args.force) |