File size: 2,021 Bytes
76a365b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f60cb
76a365b
d3f60cb
76a365b
37e61ca
76a365b
 
 
 
 
37e61ca
76a365b
 
 
 
 
 
 
 
 
d3f60cb
 
76a365b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import mxnet as mx
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from mxnet.gluon.data.vision import transforms
import os
import gradio as gr

from PIL import Image
import imageio
import onnxruntime as ort

def get_image(path):
    '''
        Using path to image, return the RGB load image
    '''
    img = imageio.imread(path, pilmode='RGB')
    return img

# Pre-processing function for ImageNet models using numpy
def preprocess(img):
    '''
    Preprocessing required on the images for inference with mxnet gluon
    The function takes loaded image and returns processed tensor
    '''
    img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
    img[:, :, 0] -= 123.68
    img[:, :, 1] -= 116.779
    img[:, :, 2] -= 103.939
    img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
    img = img.transpose((2, 0, 1))
    img = np.expand_dims(img, axis=0)

    return img

mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')

mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
with open('synset.txt', 'r') as f:
    labels = [l.rstrip() for l in f]
    
os.system("wget https://github.com/onnx/models/raw/main/vision/classification/zfnet-512/model/zfnet512-12.onnx")

ort_session = ort.InferenceSession("zfnet512-12.onnx")


def predict(path):
    img_batch = preprocess(get_image(path))

    outputs = ort_session.run(
        None,
        {"gpu_0/data_0": img_batch.astype(np.float32)},
    )

    a = np.argsort(-outputs[0].flatten())
    results = {}
    for i in a[0:5]:
        results[labels[i]]=float(outputs[0][0][i])
    return results
       

title="ZFNet-512"
description="ZFNet-512 is a deep convolutional networks for classification. This model's 4th layer has 512 maps instead of 1024 maps mentioned in the paper."

examples=[['catonnx.jpg']]
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)