File size: 4,718 Bytes
b81df6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# SPDX-License-Identifier: Apache-2.0

# coding: utf-8
# YuanYang
import math
import cv2
import numpy as np


def nms(boxes, overlap_threshold, mode='Union'):
    """
        non max suppression
    Parameters:
    ----------
        box: numpy array n x 5
            input bbox array
        overlap_threshold: float number
            threshold of overlap
        mode: float number
            how to compute overlap ratio, 'Union' or 'Min'
    Returns:
    -------
        index array of the selected bbox
    """
    # if there are no boxes, return an empty list
    if len(boxes) == 0:
        return []

    # if the bounding boxes integers, convert them to floats
    if boxes.dtype.kind == "i":
        boxes = boxes.astype("float")

    # initialize the list of picked indexes
    pick = []

    # grab the coordinates of the bounding boxes
    x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)]

    area = (x2 - x1 + 1) * (y2 - y1 + 1)
    idxs = np.argsort(score)

    # keep looping while some indexes still remain in the indexes list
    while len(idxs) > 0:
        # grab the last index in the indexes list and add the index value to the list of picked indexes
        last = len(idxs) - 1
        i = idxs[last]
        pick.append(i)

        xx1 = np.maximum(x1[i], x1[idxs[:last]])
        yy1 = np.maximum(y1[i], y1[idxs[:last]])
        xx2 = np.minimum(x2[i], x2[idxs[:last]])
        yy2 = np.minimum(y2[i], y2[idxs[:last]])

        # compute the width and height of the bounding box
        w = np.maximum(0, xx2 - xx1 + 1)
        h = np.maximum(0, yy2 - yy1 + 1)

        inter = w * h
        if mode == 'Min':
            overlap = inter / np.minimum(area[i], area[idxs[:last]])
        else:
            overlap = inter / (area[i] + area[idxs[:last]] - inter)

        # delete all indexes from the index list that have
        idxs = np.delete(idxs, np.concatenate(([last],
                                               np.where(overlap > overlap_threshold)[0])))

    return pick

def adjust_input(in_data):
    """
        adjust the input from (h, w, c) to ( 1, c, h, w) for network input
    Parameters:
    ----------
        in_data: numpy array of shape (h, w, c)
            input data
    Returns:
    -------
        out_data: numpy array of shape (1, c, h, w)
            reshaped array
    """
    if in_data.dtype is not np.dtype('float32'):
        out_data = in_data.astype(np.float32)
    else:
        out_data = in_data

    out_data = out_data.transpose((2,0,1))
    out_data = np.expand_dims(out_data, 0)
    out_data = (out_data - 127.5)*0.0078125
    return out_data

def generate_bbox(map, reg, scale, threshold):
     """
         generate bbox from feature map
     Parameters:
     ----------
         map: numpy array , n x m x 1
             detect score for each position
         reg: numpy array , n x m x 4
             bbox
         scale: float number
             scale of this detection
         threshold: float number
             detect threshold
     Returns:
     -------
         bbox array
     """
     stride = 2
     cellsize = 12

     t_index = np.where(map>threshold)

     # find nothing
     if t_index[0].size == 0:
         return np.array([])

     dx1, dy1, dx2, dy2 = [reg[0, i, t_index[0], t_index[1]] for i in range(4)]

     reg = np.array([dx1, dy1, dx2, dy2])
     score = map[t_index[0], t_index[1]]
     boundingbox = np.vstack([np.round((stride*t_index[1]+1)/scale),
                              np.round((stride*t_index[0]+1)/scale),
                              np.round((stride*t_index[1]+1+cellsize)/scale),
                              np.round((stride*t_index[0]+1+cellsize)/scale),
                              score,
                              reg])

     return boundingbox.T


def detect_first_stage(img, net, scale, threshold):
    """
        run PNet for first stage
    Parameters:
    ----------
        img: numpy array, bgr order
            input image
        scale: float number
            how much should the input image scale
        net: PNet
            worker
    Returns:
    -------
        total_boxes : bboxes
    """
    height, width, _ = img.shape
    hs = int(math.ceil(height * scale))
    ws = int(math.ceil(width * scale))

    im_data = cv2.resize(img, (ws,hs))

    # adjust for the network input
    input_buf = adjust_input(im_data)
    output = net.predict(input_buf)
    boxes = generate_bbox(output[1][0,1,:,:], output[0], scale, threshold)

    if boxes.size == 0:
        return None

    # nms
    pick = nms(boxes[:,0:5], 0.5, mode='Union')
    boxes = boxes[pick]
    return boxes

def detect_first_stage_warpper( args ):
    return detect_first_stage(*args)